Recent advances in understanding the terminal Ediacaran
Earth-life system in South China and Arctic Siberia

Avances recientes en la comprensión del sistema de vida terrestre del Ediacárico tardío en China meridional y el Ártico siberiano

1Research Group of Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Brussels, Belgium. Email: Huan. Cui@vub.be, geohcui@gmail.com; ORCID ID: https://orcid.org/0000-0003-0705-3423, https://orcid.org/0000-0002-6666-7153, https://orcid.org/0000-0002-4585-7687
2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
3Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA https://orcid.org/0000-0003-4129-6445
4Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA. ORCID ID: https://orcid.org/0000-0003-4655-2663
5Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk 630090, Russia. ORCID ID: https://orcid.org/0000-0003-0797-1347, https://orcid.org/0000-0003-4875-5261, https://orcid.org/0000-0003-1880-5635
6Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia
7United States Geological Survey, Menlo Park, CA 94025, USA https://orcid.org/0000-0002-9770-6557
8División de Geociencias Aplicadas, IPICYT, San Luis Potosi 78216, Mexico. ORCID ID: http://orcid.org/0000-0003-4368-322X
9Department of Geological Sciences, University of North Carolina, Chapel Hill, NC 27599, USA. ORCID ID: https://orcid.org/0000-0001-7904-1056
10School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. ORCID ID: https://orcid.org/0000-0003-1582-6801, https://orcid.org/0000-0002-6015-7750
11School of Earth and Environmental Sciences, Harrissburg University, PA 17101, USA. ORCID ID: https://orcid.org/0000-0002-4164-5169
12Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, VA 22030, USA. ORCID ID: https://orcid.org/0000-0001-8131-8915
13Hydrology and Remote Sensing Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705 USA. ORCID ID: https://orcid.org/0000-0002-6089-7791
14Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, VA 22030, USA. ORCID ID: https://orcid.org/0000-0001-8131-8915
15School of Earth and Environmental Sciences, Harrissburg University, PA 17101, USA. ORCID ID: https://orcid.org/0000-0002-4164-5169
16Hydrology and Remote Sensing Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705 USA. ORCID ID: https://orcid.org/0000-0002-6089-7791
17Department of Earth and Environmental Sciences, Harrissburg University, PA 17101, USA. ORCID ID: https://orcid.org/0000-0002-4164-5169
18Department of Earth and Environmental Sciences, Harrissburg University, PA 17101, USA. ORCID ID: https://orcid.org/0000-0002-4164-5169
19School of Earth and Environmental Sciences, Harrissburg University, PA 17101, USA. ORCID ID: https://orcid.org/0000-0002-4164-5169
20Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, VA 22030, USA. ORCID ID: https://orcid.org/0000-0001-8131-8915
21Hydrology and Remote Sensing Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705 USA. ORCID ID: https://orcid.org/0000-0002-6089-7791
22Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, VA 22030, USA. ORCID ID: https://orcid.org/0000-0001-8131-8915
23Hydrology and Remote Sensing Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705 USA. ORCID ID: https://orcid.org/0000-0002-6089-7791
24Nanoscale Characterization and Fabrication Laboratory, Virginia Tech, Blacksburg, Virginia 24061, USA.

Recibido el 1 de mayo de 2019 / Aceptado el 10 de julio de 2019 / Publicado online el 22 de noviembre de 2019

Citation / Cómo citar este artículo: H. Cui et al. (2019). Recent advances in understanding the terminal Ediacaran Earth-life system in South China and Arctic Siberia. Estudios Geológicos 75(2): e097. https://doi.org/10.3989/egeol.43586.552.

Copyright: © 2019 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 4.0 License.
ABSTRACT

The terminal Ediacaran contains dramatic changes in biogeochemical cycles, many of which are closely coupled with evolutionary transitions in the corresponding fossil records. Dynamic redox conditions may have caused a profound impact on early animal evolution. Our work highlights the significance of integrated bio-, litho-, and chemo-stratigraphy in geobiology research of the deep time.

Keywords: Chemostratigraphy; Redox condition; Early macroorganisms; Biogeochemical cycles; Geobiology; Animal biomineralization; Alkalinity; Cloudina.

Introduction

The terminal Ediacaran witnessed the first appearance of macroscopic organisms including the earliest biomineralizing animals in Earth history (Narbonne et al., 2012; Xiao et al., 2016). However, the biogeochemical context for this evolutionary milestone remains uncertain due to the absence of radiometric constraints for key events recorded in palaeontological and chemostratigraphic datasets, and to uncertainties in the correlation of these biogeochemical events worldwide. Moreover, soft-bodied Ediacara biotas are typically preserved as impressions in fine-grained siliciclastic rocks (Gehling, 1999), which offer limited opportunities for palaeoenvironmental analysis using geochemical tools. In contrast, two rare soft-bodied Ediacara assemblages are preserved in well-exposed marine carbonate successions of the Dengying Formation in South China (Chen et al., 2014) and the Khatyspyt Formation in Arctic Siberia (Grazhdankin et al., 2008), where comprehensive chemostratigraphic studies have recently been completed.

Results

In the Gaojiashan Member of the Dengying Formation, integrated bio- and chemo-stratigraphic profiles (2019) show that the first appearance of the biomineralizing animal fossil Cloudina is closely associated with positive anomalies of δ^{13}C_{carb}, δ^{34}S_{pyrite}, and Sr/Ca values (Fig. 1). In contrast, S isotope values of carbonate-associated sulfate (δ^{34}S_{CAS}) remain steady throughout the succession, resulting in anomalously large (>70‰) sulfur isotope fractionations (δ^{34}S_{CAS-pyrite}) in the lower half of the member that decline to ~30‰ in the upper half. This fractionation trend likely relates to changes in microbial communities, with sulfur disproportionation dominating in the lower interval, whereas microbial sulfate reduction was the principal metabolic pathway in the upper. We propose that the coupled palaeontological and biogeochemical transition may have coincided with an increase in terrestrial weathering fluxes of sulfate (evidenced by gypsum pseudomorphs), alkalinity (evidenced by Sr/Ca positive anomaly), and nutrients to the depositional basin, which stimulated primary productivity (evidenced by high δ^{13}C_{carb} values) and the spread of an oxygen minimum zone (evidenced by high δ^{15}N and low δ^{238}U values). Enhanced production and burial of organic matter is thus directly connected to the δ^{13}C_{carb}, and through bottom water anoxia likely promoting microbial sulfate reduction and pyritization as the main taphonomic pathway for Conotubus and other soft-bodied Ediacara biota. These results suggest that environmental and physiological pressures from an increase in seawater alkalinity - likely coupled with ecological pressures from predation (Hua et al., 2003, 2007) - set the stage for the evolutionary novelty of animal biomineralization.

In the Khatyspyt Formation, the profound sulfur isotope fractionation trend seen in the Dengying is preserved, with δ^{34}S_{pyrite} values rising from ca. - 20‰...
Recent advances in understanding the terminal Ediacaran Earth-life system in South China and Arctic Siberia

to ca. 50% through an interval of general invariance in δ^{34}S$_{CAS}$ (Fig. 2). The step function shift in sulfur isotope compositions is closely associated with the first occurrence of soft-bodied Ediacara biotas preserved in thinly bedded limestones, which suggests a possible link between seawater redox conditions...
and the distribution of these enigmatic macroscopic organisms. Based on multiple lines of sedimentological and geochemical evidence, we propose that the development of oceanic euxinia - which could be widespread in the continental margins due to enhanced oxidative weathering (delivering both nutrients and sulfate to ocean margins) in the terminal Ediacaran Period - may have locally prohibited the colonization of Ediacara-type organisms. The progressive secular transition from euxinic to non-euxinic and more habitable conditions may have allowed for the colonization of Ediacara-type and other macro-organisms in the upper part of the studied section of the Khatyspyt Formation.

Conclusions

In the Gaojiashan Member of the Dengying Formation, China, environmental and physiological pressures were linked to an increase in seawater alkalinity, probably coupled with ecological pressures from predation, setting the stage for the evolutionary novelty of animal biomineralization. In the Khatyspyt Formation of Arctic Siberia, the progressive secular transition from euxinic to non-euxinic and more habitable conditions may have allowed for the colonization of Ediacara-type and other macro-organisms.

References

