Estudios Geológicos, Vol 75, No 2 (2019)

Avances recientes en la comprensión del sistema de vida terrestre del Ediacárico tardío en China meridional y el Ártico siberiano


https://doi.org/10.3989/egeol.43586.552

H. Cui
Research Group of Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel - State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Bélgica
orcid https://orcid.org/0000-0003-0705-3423

A. J. Kaufman
Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, Estados Unidos
orcid https://orcid.org/0000-0003-4129-6445

S. Xiao
Department of Geosciences, Virginia Tech, Estados Unidos
orcid https://orcid.org/0000-0003-4655-2663

D. V. Grazhdankin
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences - Department of Geology and Geophysics, Novosibirsk State University, Federación de Rusia
orcid https://orcid.org/0000-0003-0797-1347

S. Peek
United States Geological Survey, España
orcid https://orcid.org/0000-0002-9770-6557

A. J. Martin
División de Geociencias Aplicadas, IPICYT, México
orcid http://orcid.org/0000-0003-4368-322X

N. V. Bykova
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Federación de Rusia
orcid https://orcid.org/0000-0003-4875-5261

V. I. Rogov
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Federación de Rusia
orcid https://orcid.org/0000-0003-1880-5635

X. M. Liu
Department of Geological Sciences, University of North Carolina, Estados Unidos
orcid https://orcid.org/0000-0001-7904-1056

F. Zhang
Natural History Museum of Denmark, University of Copenhagen, Dinamarca
orcid https://orcid.org/0000-0003-3277-445X

S. J. Romaniello
School of Earth and Space Exploration, Arizona State University, Estados Unidos
orcid https://orcid.org/0000-0003-1582-6801

A. D. Anbar
School of Earth and Space Exploration, Arizona State University, España
orcid https://orcid.org/0000-0002-6015-7750

Y. Peng
Department of Geology and Geophysics, Louisiana State University, Estados Unidos
orcid https://orcid.org/0000-0001-6458-5552

Y. Cai
State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, China
orcid https://orcid.org/0000-0002-9867-8156

J. D. Schiffbauer
Department of Geological Sciences, University of Missouri, Estados Unidos
orcid https://orcid.org/0000-0003-4726-0355

M. Meyer
Department of Earth and Environmental Sciences, Harrisburg University, Estados Unidos
orcid https://orcid.org/0000-0002-4164-5169

G. J. Gilleaudeau
Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Estados Unidos
orcid https://orcid.org/0000-0001-8131-8915

R. E. Plummer
Hydrology and Remote Sensing Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Estados Unidos
orcid https://orcid.org/0000-0002-6089-7791

N. E. Sievers
Department of Geosciences, Virginia Tech - Nanoscale Characterization and Fabrication Laboratory, Virginia Tech, Estados Unidos
orcid https://orcid.org/0000-0001-8584-0428

S. Goderis
Research Group of Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Bélgica
orcid https://orcid.org/0000-0002-6666-7153

P. Claeys
Research Group of Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Bélgica
orcid https://orcid.org/0000-0002-4585-7687

Resumen


El Ediacárico terminal inlcuye una serie de cambios drásticos en los ciclos biogeoquímicos, muchos de los cuales se asocian con modificaciones evolutivas en los registros fósiles correspondientes. Entre ellos destacan las condiciones redox, las cuales pueden haber causado un impacto profundo en la evolución animal temprana. Este trabajo destaca el significado de la lito-, bio- y quimioestratigrafía en la investigación geobiológica del tiempo profundo.

Palabras clave


Quimioestratigrafía; Condiciones redox; Macroorganismos tempranos; Ciclos biogeoquímicos; Geobiología; Biomineralización animal; Alcalinidad; Cloudina

Texto completo:


HTML PDF XML

Referencias


Chen, Z.; Zhou, C.; Xiao, S.; Wang, W.; Guan, C.; Hua, H. & Yuan X. (2014). New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports, 4: 4180.

Cui, H.; Grazhdankin, D.V.; Xiao, S.; Peek, S.; Rogov, V.I.; Bykova, N.V.; Sievers, N.E.; Liu, X.-M. & Kaufman, A.J. (2016a). Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 122–139.

Cui, H.; Kaufman, A.J.; Xiao, S.; Peek, S.; Cao, H.; Min, X.; Cai, Y.; Siegel, Z.; Liu, X.M.; Peng, Y.; Schiffbauer, J.D. & Martin, A.J. (2016b). Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 14: 344–363.

Cui, H.; Xiao, S.; Cai, Y.; Peek, S.; Plummer, R.E. & Kaufman, A.J. (2019). Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China. Geological Magazine, in press.

Gamper, A. (2014). Global trends in nutrient dynamics during the Ediacaran-Cambrian period as revealed by nitrogen and carbon isotope trends. PhD Thesis, Freie University, Berlin, https://d-nb.info/1064307035/34

Gehling, J.G. (1999). Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14: 40–57.

Grazhdankin, D.V.; Balthasar, U.; Nagovitsin, K.E. & Kochnev, B.B. (2008). Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology, 36: 803–806.

Hua, H.; Pratt, B.R. & Zhang L.Y. (2003). Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18: 454–459.

Hua, H.; Chen, Z. & Yuan, X. (2007). The advent of mineralized skeletons in Neoproterozoic Metazoa - new fossil evidence from the Gaojiashan Fauna. Geological Journal, 42: 263–279.

Narbonne, G.M.; Xiao, S.; Shields, G.A. & Gehling J.G. (2012). The Ediacaran Period. In: The Geologic Time Scale (Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D. & Ogg, G.M. eds.). Elsevier, Boston, USA, 413–435.

Schiffbauer, J.D.; Xiao, S.; Cai, Y.; Wallace, A.F.; Hua, H.; Hunter, J.; Xu, H.; Peng, Y. & Kaufman, A.J. (2014). A unifying model for Neoproterozoic-Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications, 5: 5754.

Xiao, S.; Narbonne, G.M.; Zhou, C.; Laflamme, M.; Grazhdankin, D.V.; Moczyd?owska-Vidal, M. & Cui, H. (2016). Toward an Ediacaran time scale: Problems, protocols, and prospects. Episodes, 39: 540–555.

Zhang, F.; Xiao, S.; Kendall, B.; Romaniello, S.J.; Cui, H.; Meyer, M.; Gilleaudeau, G.J.; Kaufman, A.J. & Anbar, A.D. (2018). Extensive marine anoxia during the terminal Ediacaran Period. Science Advances 4, eaan8983.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista estudios.geologicos@igeo.ucm-csic.es

Soporte técnico soporte.tecnico.revistas@csic.es