Note on the taxonomy of the Microtus (Iberomys) (Arvicolinae, Rodentia) from the Late Pleistocene of Gruta do Caldeirão (Tomar, Portugal) and paleoclimatic interpretation of the rodent assemblage

Nota sobre la taxonomía de Microtus (Iberomys) (Arvicolinae, Rodentia) del Pleistoceno superior de la Gruta do Caldeirão (Tomar, Portugal) e interpretación paleoclimática de la asociación de roedores

J.M. López-García1,2,*, L. Póvoas3, J. Zilhão4,5,6

1 Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Campus Sescelades URV, Edifici W3, 43007, Tarragona, Spain. Email: jmlopez@iphes.cat; ORCID ID: https://orcid.org/0000-0003-1605-9763

2 Àrea de Prehistoria, Universitat Rovira i Virgili (URV), Avinguda de Catalunya 35, 43002, Tarragona, Spain

3 Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica 56, 1250 102 Lisbon, Portugal. Email: lpovoas@museus.ul.pt; ORCID ID: https://orcid.org/0000-0002-1144-8359

4 Department of History and Archaeology, University of Barcelona, 08007, Barcelona, Spain. Email: joao.zilhao@ub.edu; ORCID ID: https://orcid.org/0000-0001-5937-3061

5 UNIARQ-Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras, Universidade de Lisboa, 1600-214, Lisbon, Portugal.

6 Catalan Institution for Research and Advanced Studies (ICREA). 08010, Barcelona, Spain.

* Corresponding author

 

ABSTRACT

Gruta do Caldeirão is an archaeological cave site located in Tomar (Portugal, western Iberian Peninsula), which contains an important Late Pleistocene sequence from Middle Paleolithic (Mousterian) to Upper Paleolithic (Solutrean-Magdalenian), including lithic tools, human remains, and other large- and small-vertebrate remains. Our revision and interpretation of the rodent assemblage previously published in the 1990s leads to three important conclusions: 1) the only species of the subgenus Iberomys present in the sequence is the current endemic Iberian vole species Microtus (Iberomys) cabrerae (Cabrera’s vole); 2) the rodent assemblage is dominated throughout by open-forest species, such as the long-tailed field mouse (Apodemus sylvaticus), and species associated with open-humid areas such as the Mediterranean and Lusitanian pine voles (Microtus (Terricola) spp.), with the notable presence of an extinct hamster (Allocricetus bursae) in layer K, and three vole species not currently found in the vicinity of the cave (Microtus arvalis [the common vole], M. agrestis [the field vole], and Chionomys nivalis [the European snow vole]) also in the assemblage; 3) the bioclimatic model, which is used to reconstruct climatic parameters on the basis of the rodent association, corroborates the proposal that the Solutrean occupation from layers H to Fa took place during a cold period equated to the Last Glacial Maximum (LGM), as indicated by the available radiocarbon dates and supported by the magnetic susceptibility data.

Keywords: Microtus (Iberomys) cabrerae; Middle to Upper Paleolithic; Paleoclimatic reconstruction; Last Glacial Maximum; Western Iberia.

 

RESUMEN

Gruta do Caldeirão es un yacimiento arqueológico en cueva situado en Tomar (Portugal, oeste de la península Ibérica), que contiene una importante secuencia perteneciente al Pleistoceno superior, adscrita culturalmente al Paleolítico medio (Musteriense) y Paleolítico superior (Solutrense-Magdaleniense), que incluye industria lítica, restos humanos y restos de grandes y pequeños vertebrados. La revisión e interpretación de la asociación de roedores de la secuencia, previamente publicada en los años 90 del siglo pasado, nos ha permitido remarcar tres importantes conclusiones: 1) la única especie del subgénero Iberomys presente en la secuencia es la especie endémica actual de topillo Microtus (Iberomys) cabrerae (topillo de Cabrera); 2) la asociación de roedores está dominada en toda la secuencia por especies relacionadas con bosques abiertos, como el ratón de campo (Apodemus sylvaticus) y especies relacionadas con espacios abiertos-húmedos como los topillos mediterráneo y lusitánico (Microtus (Terricola) spp.), remarcando la presencia de un hámster extinto (Allocricetus bursae) en el nivel K y tres especies de topillos que no tienen representación actual en la zona circundante a la cavidad (Microtus arvalis - topillo campesino, Microtus agrestis – topillo agreste y Chionomys nivalis - topillo nival); 3) Finalmente, el método del Modelo Bioclimático, aplicado a la asociación de roedores, otorga resultados acordes con que la ocupaciones solutrenses situadas entre los niveles H y Fa están relacionadas con un periodo frío equiparado con el Último Máximo Glacial (LGM), indicado por las dataciones de radiocarbono y anteriores estudios de susceptibilidad magnética de la secuencia.

Palabras clave: Microtus (Iberomys) cabrerae; Paleolítico Medio-Superior; Reconstrucción paleoclimática; Último Máximo Glacial; Iberia occidental.

 

Recibido el 6 de junio de 2019; Aceptado el 9 de octubre de 2019; Publicado online el 9 de julio de 2020

Citation / Cómo citar este artículo: López-García, J.M. et al. (2020). Note on the taxonomy of the Microtus (Iberomys) (Arvicolinae, Rodentia) from the Late Pleistocene of Gruta do Caldeirão (Tomar, Portugal) and paleoclimatic interpretation of the rodent assemblage. Estudios Geológicos 76(1): e128. https://doi.org/10.3989/egeol.43622.542.

Copyright: © 2020 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 4.0 License.


 

CONTENT

IntroductionTOP

Gruta do Caldeirão (39° 30’ 11” N; 8° 24’ 32” W) is an archaeological site located about 140 km northeast of Lisbon (Portugal) at an altitude of 123 m a.s.l., 8 km north of the city of Tomar (Fig. 1A). The cave opens in calcareous dolomites of the Lower Jurassic, and its entrance, which faces south, is located in the northern slope of a valley in the right bank of River Nabão. The excavations carried out by one of us (J. Zilhão) between 1979 and 1988 (Zilhão, 1992, 1997) showed a 6.2 m stratigraphic sequence divided into 15 layers, containing Late Pleistocene (Middle and Upper Paleolithic) and Early Holocene (Neolithic) archaeological material (Fig. 1B). A zooarchaeological study of the large vertebrates showed that, during the Middle Paleolithic and the early Upper Paleolithic, the cave functioned in part as a large carnivore den; hyenas were the main bone accumulator, with contributions from leopards and the bearded vulture. In the later Upper Paleolithic, the bones were mainly accumulated by humans (Davis, 2002; Davis et al., 2007). Human remains have been identified in the Solutrean and Magdalenian layers (Trinkaus et al., 2001). Regarding the climatic reconstruction, and in agreement with the radiocarbon dates (ca. 22.5 -25.5 ka cal BP; Zilhão, 1997), the magnetic susceptibility (MS) of the Gruta do Caldeirão sedimentary sequence is lowest in Solutrean layers H to Fc, indicating a cold period related to the Last Glacial Maximum (LGM) (Ellwood et al., 1998), which includes, according to Rasmussen et al. (2014), Greenland Stadials (GS) GS 2.1, GS 2.2 and GS 3.

Figure 1.—A: Location of Gruta do Caldeirão (base map: National Geographic Society, modified). B: The stratigraphic sequence of the site (after Póvoas et al. 1992 and Ellwood et al. 1998, modified).

 

A preliminary study of the rodent assemblage (Póvoas et al., 1992; Brunet-Lecomte & Póvoas, 1993) identified 11 species (Table 1): Apodemus sylvaticus, Allocricetus bursae, Eliomys quercinus, Microtus arvalis, M. agrestis, M. (Iberomys) brecciensis, M. (Iberomys) cabrerae, M. (Terricola) lusitanicus, M. (Terricola) duodecimcostatus, Chionomys nivalis and Arvicola sapidus. Environmentally, the succession was interpreted as a landscape dominated by open and dry biotopes with forested areas from layers K to Fc (indicated by the presence of M. arvalis and A. bursae), turning into a more humid and forested biotope in layers Fb and Fa (represented by a high percentage of A. sylvaticus and M. (Terricola) spp.), and ending in a drier environment in layer Eb (shown by the major presence of M. arvalis, the low percentage of A. sylvaticus, and the high proportion of M. (T.) duodecimcostatus in relation to M. (T.) lusitanicus).

Table 1.—Minimum Number of Individuals by species and layer from Gruta do Caldeirão. Modified from Póvoas et al. (1992).
Species/Layers Eb Fa Fb Fc H I Ja Jb K
Apodemus sylvaticus 251 56 65 9 10 15 21 19 9
Allocricetus bursae 0 0 0 0 0 0 0 0 3
Eliomys quercinus 53 13 16 3 4 6 8 2 4
Microtus arvalis-agrestis 69 11 17 3 4 2 10 13 8
Microtus (Iberomys) cabrerae 4 1 3 0 2 1 1 1 1
Chionomys nivalis 1 0 1 0 0 0 0 1 0
M. (T.) duodecimcostatus-lusitanicus 435 65 64 8 12 22 22 15 4
Arvicola sapidus 1 0 0 0 0 0 0 0 0
Total 814 146 166 23 32 46 62 51 29

Against this background, our present objectives are threefold. Our first aim is to revise the Microtus (Iberomys) material, because current data suggest that the last occurrence of the extinct species M. (Iberomys) brecciensis in Iberia was at the end of Marine Isotope Stage (MIS) 6 or the beginning of MIS 5, e.g. at Maltravieso-Sala de los Huesos in Extremadura, dated to between 183–117 ka (Hanquet, 2011), or in layer I of Cova del Rinoceront in Barcelona, dated to ca. 84 ka (López-García et al., 2016). Our second aim is to reinterpret the assemblage, focusing on extinct taxa such as Allocricetus bursae and on species not currently found in the area, such as Microtus arvalis, Microtus agrestis and Chionomys nivalis, using the current distribution and habitat preference of these species (e.g. Paupério et al., 2017) as well as their first and last appearance data in Iberia (in the case of A. bursae). Our third aim is to apply the bioclimatic model (in accordance with Hernández-Fernández, 2001a, 2001b) in order to infer various climatic parameters and compare the Gruta do Caldeirão rodent assemblage with the climatic signals obtained by studying the magnetic susceptibility of the sequence (Ellwood et al., 1998), the current climatic parameters for the surrounding area, and the general dynamics of sea surface temperatures (SST) and pollen data from sea cores in the western Iberian margin (Naughton et al., 2007; Salgueiro et al., 2014; Turon et al., 2003).

Material and Methods TOP

TaxonomyTOP

From the revised material, a total of 23 first lower molars (m1) have been identified as Iberomys. Although in Cuenca-Bescós et al. (2014) we proposed, based on their morphological differences with other microtines species, to consider Iberomys as a genus, according to the last phylogenetic studies Iberomys species are a sister group to Microtus agrestis, ruling out that Iberomys be elevated to genus status (Barbosa et al. 2018). The nomenclature used in the description of this subgenus (only the first lower molars are considered) is that of Van der Meulen (1973) and Martin (1987) (Fig. 2). Length (L), width (W) and parameter a (Fig. 2) are those proposed by Van der Meulen (1973), and parameters Li and La (Fig. 2) are those proposed by Cuenca-Bescós et al. (1995). A/L is the ratio between parameter a and length, and La/Li is the ratio between parameters La and Li. The measurements were compared with the fossil populations of M. (Iberomys) brecciensis from Gruta da Aroeira (López-García et al., 2018) and M. (Iberomys) cabrerae from Gruta da Oliveira (unpublished material), both located in the Almonda karst system, some 25 km SW of Gruta do Caldeirão. Also, the measurements were compared with other Iberian fossil populations of M. (I.) brecciensis from Galeria, TD10 and TE18-19 (Cuenca-Bescós et al. 1999; López-García et al. 2008; 2011c; 2015) and M. (I.) cabrerae from Abric Romaní, Cova del Gegant and Gorham’s cave (López-García et al. 2008; 2011; 2015).

Figure 2.—Nomenclature and measurement methods used for the description of the m1 of arvicolines. Abbreviations: a: length of anteroconid complex; L: total length; La: width of T4; Li: width of T5; W: width; ACC: anteroconid complex; AC: anterior cap; BRA: buccal re-entrant angle; LRA: lingual re-entrant angle; T4-T9: triangles 4–9 (after Luzi & López-García 2019, modified).

 

Paleoclimatic reconstructionTOP

The taxonomic composition of the rodent assemblage allows us to evaluate the paleoclimatic conditions prevalent in the area around Gruta do Caldeirão. We used the bioclimatic model developed by Hernández-Fernández (2001a, 2001b), which is based on the hypothesis that a significant correlation exists between climate and mammal communities (see also Hernández-Fernández & Peláez-Campomanes, 2005; Hernández- Fernández et al., 2007). According to this model, mammal assemblages can be assigned to ten climate types, five of which are represented in the Gruta do Caldeirão rodent assemblage. On the basis of these, a climatic restriction index can be calculated (CRIi = 1/n, where “n” is the number of climatic zones where the species are represented and “i” is the climatic zone where the species appear) (Table 2). The climate types in question are: IV Subtropical with winter rains and summer droughts; VI Typical temperate; VII Arid temperate; VIII Cold-temperate (boreal) and IX Polar. The bioclimatic component (BC; representation of each of these five climate types per stratigraphic unit) is also calculated, using the following formula: BCi = (ΣCRIi) × 100 / S), where S is the number of species per unit at Gruta do Caldeirão (Table 2). From the BC, a multiple linear regression mathematical model (Hernández-Fernández & Peláez-Campomanes, 2005) allows various climatic parameters to be estimated (Table 3): mean annual temperature (MAT), mean temperature of the coldest month (MTC), mean temperature of the warmest month (MTW) and mean annual precipitation (MAP). These parameters are compared with the present-day data (from over a period of 30 years) from the meteorological station of Tomar (39° 36′ N, 8° 25′ E), situated at an altitude of 54 m a.s.l. The figures for Tomar are as follows: MAT = 16.4 °C, MTC = 10.5 °C, MTW = 22.9 °C and MAP = 773 mm (Climate-Data.org).

Table 2.—Distribution of the rodent species identified at Gruta do Caldeirão according to their climate preferences, in accordance with Hernández-Fernández (2001b) and Hernández-Fernández et al. (2007). IV Subtropical with winter rains and summer droughts; VI Typical temperate; VII Arid-temperate; VIII Cold-temperate (boreal); IX Polar.
  IV VI VII VIII IX
Apodemus sylvaticus 0.5 0.5      
Allocricetus bursae 0.333 0.333 0.333    
Eliomys quercinus 0.5 0.5      
Microtus arvalis   1      
Microtus agrestis   0.5   0.5  
Microtus (Iberomys) cabrerae 1        
Chionomys nivalis 0.25 0.25   0.25 0.25
Microtus (Terricola) lusitanicus 1        
Microtus (Terricola) duodecimcostatus 1        
Arvicola sapidus 0.5 0.5      
Table 3.—Multiple linear regressions for each studied climatic factor as a function of the bioclimatic components in the Gruta do Caldeirão rodent fauna. b: intercept; aIV-aIX slopes of the different bioclimatic components; r2: coefficient of determination; SE: standard error of the estimate. Modified from Hernández-Fernández (2001b) and Hernández-Fernández & Peláez-Campomanes (2005).
Climatic Parameters b aIV aVI aVII aVIII aIX r2 SE
MAT in °C 26.686 -0.074 -0.135 -0.217 -0.404 -0.386 0.93 3.637
MTW in °C 26.219 0.031 -0.113 -0.037 -0.121 -0.287 0.746 4.754
MTC in °C 27.538 -0.175 -0.141 -0.418 -0.710 -0.465 0.932 5.081
MAP in mm 2978.195 -32.648 -5.076 -28.400 -33.109 -25.980 0.746 470.615

Taxonomy TOP

Family Cricetidae Fischer, 1817

Subfamily Arvicolinae Gray, 1821

Genus Microtus Schrank, 1798

Subgenus Iberomys Chaline, 1972

Microtus (Iberomys) cabrerae Thomas, 1906

(Fig. 3: 1–15)

Figure 3.—First lower molars (m1) of Microtus (Iberomys) cabrerae from Gruta do Caldeirão. 1-7: left m1; 8-15: right m1. All teeth are in occlusal view. Scale 1 mm.

 

Material: nine left lower m1 (CAL/P11/F11oeste/Fb, CAL/P12/F13/Fc, CAL/P12/H5/I, CAL/P12/H2/I, CAL/P12/I4/I, CAL/P12/K1/K, CAL/P13/F11/Fc, CAL/P14/J5/Jb and CAL/N13/E2(2)/Eb), and 14 right lower m1 (CAL/P11/H3/Fc, CAL/P11/I8/I, CAL/P11/K2/K, CAL/P12/F15/Fc(1), CAL/P12/F15/Fc(2), CAL/P12/K1/K, CAL/P12/J5/Ja(1), CAL/P12/J5/Ja(2), CAL/P13/F8/Fc, CAL/P13/F10/Fc, CAL/O15/E2/Eb, CAL/L15/E1(1)/Eb, CAL/L15/E1(2)/Eb and CAL/N13/E2(2)/Eb).

Description: In terms of the description by Chaline (1972), modified by Ayarzagüena & López-Martínez (1976) and Cuenca-Bescós et al. (2014), the first lower molars (m1) recovered from Gruta do Caldeirão are characterized by clear labio-lingual asymmetry, more pronounced than in other microtines; on the labial side of the m1 there are only three re-entrants filled with cement; in some specimens there is a fourth, greatly reduced re-entrant (BRA4), allowing these specimens to be distinguished from other species of the genus Microtus and subgenus Terricola. Moreover, except for three juveniles (CAL/P11/K2/K, CAL/P12/F15/Fc(2) and CAL/P12/K1/K), all the identified teeth are large and feature the following: very marked labio-lingual asymmetry (mainly observed between triangles T4 and T5); a labial re-entrant angle 5 (LRA5); a scarcely to very pronounced angle between triangle T7 and the anterior cusp (AC); and a non-visible to well-developed double angle in triangle T6. The specimens from Caldeirão differs from M. (I.) brecciensis because in this fossil species the m1 are smaller and less asymmetrical than in M. (I.) cabrerae, and in general the LRA5 and the double angle of triangle T6 are non-existent or variably developed. All these features lead us to ascribe our material morphologically to the species M. (I.) cabrerae. This conclusion can be metrically corroborated by drawing a comparison between 17 measurable m1 (Table 4; excluding the juvenile or fragmented teeth CAL/P12/J5/Ja(2) and CAL/L15/E1(2)/Eb) and the extinct M. (I.) brecciensis from the Middle Pleistocene sites of Gruta da Aroeira (Torres Novas, Portugal) (López-García et al., 2018), Galeria, TD10 and TE 18–19 (all three from Sierra de Atapuerca, Burgos, Spain) (Cuenca-Bescós et al. 1999; López-García et al. 2008; 2011c; 2015) and the M. (I.) cabrerae from the Late Pleistocene sites of Gruta da Oliveira (Torres Novas, Portugal) (unpublished material), A. Romaní (Capellades, Barcelona, Spain), C. Gegant (Sitges, Barcelona, Spain) and Gorham’s cave (Gibraltar, UK) (López-García et al. 2008; 2011c; 2015) (Table 5; 6; Fig. 4).

Figure 4.—A: Box plot comparing length (L) of the first lower molars (m1) of M. (Iberomys) brecciensis from the Middle Pleistocene sites of Gruta da Aroeira (López-García et al. 2018), Galeria, TD10 and TE18-19 (Cuenca-Bescós et al. 1999; López-García et al. 2008; 2011c; 2015), M. (Iberomys) cabrerae from the Late Pleistocene sites of Gruta da Oliveira (unpublished data), A. Romaní, C. Gegant and Gorham’s cave (López-García et al. 2008; 2011c; 2015) and the identified material from Gruta do Caldeirão. The horizontal lines inside the boxes indicates de median. The boxes limits indicate the 25-75 % quartiles; B: length to width comparison of the Middle Pleistocene M. (Iberomys) brecciensis from Gruta da Aroeira with the identified M. (Iberomys) cabrerae from Gruta do Caldeirão.

 
Table 4.—Measurements and indices of the m1 of Microtus (Iberomys) cabrerae from Gruta do Caldeirão. Linear data (L, W, a,Li, La) are in mm. Abbreviations: n, number of m1 measured; mean, mean of the obtained values; max, maximum of the obtained values; min, minimum of the obtained values; SD, standard deviation of the obtained values.
n mean max min SD
L 17 3.49 3.98 3.05 0.23
W 17 1.36 1.54 1.22 0.10
Li 17 0.95 1.11 0.84 0.08
La 17 0.41 0.51 0.30 0.06
a 17 1.92 2.15 1.72 0.12
A/L 17 55.00 57.01 53.29 1.12
La/Li 17 42.90 51.32 30.27 6.47
Table 5.—Measurements of Length (L) of the different Iberian sites with presence of M. (I.) brecciensis (Aroeira, Galeria, TD10 and TE18-19) and M. (I.) cabrerae (Romaní, Gegant and Gorham’s) including Gruta do Caldeirão. Abbreviations: n, number of m1 measured; mean, mean of the obtained values; max, maximum of the obtained values; min, minimum of the obtained values; SD, standard deviation of the obtained values.
n mean max min SD
Aroeira 7 2,78 2,90 2,43 0,16
Galeria 10 2,97 3,47 2,42 0,29
TD10 28 2,88 3,20 2,57 0,16
TE18-19 12 2,91 3,04 2,64 0,12
Oliveira 84 3,22 3,85 2,60 0,24
Romaní 25 3,35 3,72 3,00 0,19
Gegant 7 3,31 3,45 3,05 0,15
Gorham’s 5 3,40 3,64 3,16 0,18
Caldeirão 17 3,49 3,98 3,05 0,23
Table 6.—Measurements of Length (L) and Width (W) used for the comparison of Middle Pleistocene M. (I.) brecciensis from Gruta da Aroeira (ARO) and Late Pleistocene M. (I.) cabrerae from Gruta do Caldeirão (CAL).
  L W
ARO_Xc_1 2.82 0.896
ARO_Xc_2 2.76 1.165
ARO_Xc_3 2.88 0.963
ARO_Xc_4 2.43 1.025
ARO_Xc_5 2.88 0.934
ARO_Xc_6 2.9 0.947
ARO_Xc_7 2.82 0.949
CAL_P11_F11oeste_Fb_1 3.054 1.261
CAL_P11_H3_Fc_2 3.837 1.532
CAL_P11_I8_I_3 3.801 1.291
CAL_P12_F13_Fc_4 3.396 1.264
CAL_P12_F15_Fc_5 3.406 1.334
CAL_P12_H5_I_6 3.429 1.495
CAL_P12_H2_I_7 3.482 1.381
CAL_P12_I4_I_8 3.561 1.491
CAL_P12_K1_K_9 3.47 1.405
CAL_P12_J5_Ja_10 3.62 1.388
CAL_P13_F8_Fc_11 3.393 1.267
CAL_P13_F10_Fc_12 3.462 1.319
CAL_P13_F11_Fc_13 3.544 1.344
CAL_P14_J5_Jb_14 3.482 1.298
CAL_O15_E2_Eb_15 3.247 1.224
CAL_L15_E1(1)_Eb_16 3.222 1.294
CAL_N3_E2 (2)_Eb_17 3.981 1.537

Remarks: M. (I.) cabrerae (Cabrera’s vole) is currently endemic to the Iberian Peninsula, where it is widely distributed, with well-documented populations in the foothills of the Pyrenees, the southern Iberian System, the Baetic Sierras and the Central System, also extending the length of Portugal from SW to NE in a limited and patchy manner (Palomo et al., 2007; Paupério et al., 2017) (Fig. 5). It exclusively inhabits areas with a Mediterranean climate, a high water table, and all-year-round herbaceous cover (Pita et al., 2017). At present, the first appearance datum of M. (I.) cabrerae in the Iberian Peninsula occurs in the Marine Isotope Stage 5 (MIS 5) sites of Cueva de las Pinturas (Sesé & Ruiz-Bustós, 1992), Cova Bolomor (Guillem-Calatayud. 1995, 2001), Cueva del Camino (Laplana et al., 2013), Preresa (Sesé et al. 2011), Figueira Brava (Jeannet, 2000; Zilhão et al., 2020), and Gruta da Oliveira (unpublished material) (Fig. 5). During MIS 3 and MIS 2 M. (I.) cabrerae is represented outside its current range (Fig. 5), e.g. at Gorham’s cave (López-García et al., 2011a), Boquete de Zafarraya (Barroso Ruiz et al., 2006), El Portalón (López-García et al. 2010a), Cueva de la Zarzamora (Sala et al. 2011), Cueva de los Moros de Gabasa (Gil & Lanchares, 1988), Cueva de Aguilón-P7 (Cuenca-Bescós et al., 2010a), Cova dels Xaragalls (López-García et al., 2012a), Cova de Teixoneres (López-García et al., 2012b), Cova del Toll (Fernández-García & López-García, 2013), Abric Romaní (Fernández-García et al., 2018), Cova del Gegant (López-García et al., 2012b), Cova de Valdavara-1 (López-García et al., 2011b), El Salt (Fagoaga et al., 2018) and Cova Colomera (López-García et al., 2010b)

Figure 5.—Current and Late Pleistocene-Early Holocene distribution of Microtus (Iberomys) cabrerae in the Iberian Peninsula (modified and updated from López-García and Cuenca-Bescós 2012, using Laplana and Sevilla 2013, Bañuls-Cardona 2017, and Fagoaga et al. 2018). 1. Camino; 2. HAT and Preresa; 3. C. Horá; 4. C. Gegant; 5. A. Romaní; 6. Xaragalls; 7. Aguilón; 8. Zafarraya; 9. Zarzamora; 10. Gorham’s; 11. Caldeirao; 12. El Portalón; 13. Chimeneas; 14.Valdavara-1; 15. l’Arbreda; 16. Cendres; 17. Baños de Mula; 18. Cingle Vermell; 19. C. Colomera; 20. La Sarsa; 21. La Ventana; 22. Bolumini; 23. El Frare; 24. Cova Foradada; 25. Cova 120; 26. Alorda Park; 27. Coves del Toll (Teixoneres and Toll caves) and Balma del Gai; 28. C. Bolomor; 29. El Salt; 30. Figueira Brava; 31. Oliveira; 32. C. de las Pinturas; 33. Gabasa; 34. C. Bonica.

 

The Gruta do Caldeirão rodent assemblageTOP

According to Póvoas et al. (1992), the long-tailed field mouse (Apodemus sylvaticus) represents more than 30% of the individuals in all the layers of the Gruta do Caldeirão sequence. The relative abundance of A. sylvaticus indicates that the landscape surrounding the cave featured good shrub cover and forest margins (Paupério et al., 2017). Moreover, the pine vole species M. (T.) duodecimcostatus and M. (T.) lusitanicus represent more than 30% of the individuals in all the layers, except K (13.8 %) and Jb (29.4 %). The relative abundance of these species indicates open landscapes and humid environmental conditions (Paupério et al., 2017). Worthy of note is also the presence of the extinct hamster Allocricetus bursae and of three vole taxa currently absent in the area: the European snow vole (Chionomys nivalis), the common vole (Microtus arvalis), and the field vole (Microtus agrestis).

Allocricetus bursae has been found only in layer K (Póvoas et al., 1992; initially assigned to the Mousterian, this unit has since been recognized as belonging in fact to an undiagnostic early Upper Paleolithic). The biotope preferences of this extinct hamster can be inferred from the present-day species that is phylogenetically closest to it, Cricetulus migratorius (the grey hamster). The latter’s present range extends from eastern Europe through Russia and central Asia to Mongolia and western China, where it inhabits dry grasslands, steppes and semi-deserts; arid areas with relatively sparse vegetation are preferred, and forests and damp habitats avoided (Kryštufek et al., 2016). The fossil record of A. bursae in the Iberian Peninsula goes back to the early Middle Pleistocene of Gran Dolina (Cuenca-Bescós et al. 2010b), with an age around 600 ka, and it is relatively abundant during the Middle Pleistocene and Late Pleistocene in central-south and eastern Iberia. At present, the most recent occurrence of the species is in the Late Pleistocene site of Cueva Ambrosio, with an age between 17.9–16.5 ka BP (Sesé & Soto, 1988).

Chionomys nivalis is found in layers Jb (early Upper Paleolithic), Fb (Solutrean) and Eb (Magdalenian) (Póvoas et al., 1992). It is a species mainly linked to the presence of stony soils with open meadows and herbaceous vegetation in mountainous regions above 1000 m (Paupério et al., 2017). In Portugal, it is currently only found in the northeastern Serra de Montesinho, at altitudes above 1340 m (Paupério et al., 2017). C. nivalis appears in the Iberian Peninsula during the Late Pleistocene (Sesé, 1994; Sesé & Sevilla. 1996), where it is well represented everywhere but the Levant (López-García, 2011).

Microtus arvalis and Microtus agrestis are represented in all layers (Póvoas et al., 1992). Both taxa inhabit grassland, but M. arvalis prefers open dry terrain with discontinuous herbaceous cover and M. agrestis prefers damp areas such as marshes, peat-bogs and river banks (Paupério et al., 2017). In Portugal, M. arvalis is currently only present in the extreme northeast, and M. agrestis lives exclusively in the north and north-central area (Paupério et al., 2017). Both species are also identified (Moreno-García & Pimenta, 2002) in Portugal outside its nowadays distribution in layers TP06 and TP09 of the Lagar Velho rockshelter (Lapedo valley, Leiria) with an age between 24–27 ka cal BP (Zilhão & Almeida, 2002). The first occurrence of these species in the Iberian Peninsula is in the Middle Pleistocene sites of Sierra de Atapuerca (ca. 400 ka) (Luzi & López-García, 2019; Luzi, 2018); both are well represented all over Iberia throughout the Late Pleistocene (López-García, 2011).

Paleoclimatic reconstruction TOP

By comparison with current data (Table 7), the bioclimatic model characterizes the climate of the area around Gruta do Caldeirão as colder (ΔMAT = -3.3 °C to -1.6 °C) and relatively drier (ΔMAP = -95 mm to -49 mm) with the exception of layer Fc, where the precipitation would have been higher than nowadays (ΔMAPFc = +85 mm). Summers were similar to the present (ΔMTW = -0.9 °C to +0.2 °C), but winters were colder (ΔMTC = -5.2 °C and -3.0 °C). The study of the magnetic susceptibility of the sequence (Ellwood et al. 1998) also concluded that layers H to Fb corresponded to the coldest period of the sequence, in agreement with their radiocarbon dating to the Last Glacial Maximum (LGM).

Table 7.—Difference (Δ) between the values obtained by analyzing the rodent assemblage from each stratigraphic unit of Gruta do Caldeirão and the present-day values of the same parameters. ΔMAT, difference in mean annual temperature (ºC); ΔMTW, difference in mean temperature of warmest month (ºC); ΔMTC, difference in mean temperature of coldest month (ºC); ΔMAP, difference in mean annual precipitation (mm).
ΔMAT ΔMTW ΔMTC ΔMAP
Eb -2.93 -0.93 -4.50 -49.27
Fa -1.65 0.19 -3.07 -78.18
Fb -3.28 -0.95 -5.22 -95.30
Fc -2.41 -0.85 -3.50 85.39
H -1.65 0.19 -3.07 -78.18
I -1.65 0.19 -3.07 -78.18
Ja -1.65 0.19 -3.07 -78.18
Jb -3.28 -0.95 -5.22 -95.30
K -1.93 0.09 -3.61 -68.00

The magnetic susceptibility and the MAT and MAP data derived from the rodent assemblage thus concur that the LGM in the area was characterized by relatively low temperatures and high precipitation (Fig. 6). This inference is consistent with the presence of species that according to López-García et al. (2010b) have mid-European requirements (e.g. the C. nivalis found in level Fb), as well as with the absence in layer Fc of species that have strict Mediterranean requirements (i.e. M. (I). cabrerae); it is also consistent with the suggestion made by Póvoas et al. (1992) to the effect that more humid conditions prevailed during the deposition of layers Fa and Fb.

Figure 6.—Comparison of the magnetic susceptibility data for the Gruta do Caldeirão sequence (after Ellwood et al. 1998, modified) with the mean annual temperature (MAT) and mean annual precipitation (MAP) derived from the rodent assemblages using the bioclimatic model.

 

These data coincide with the SST data from the western Iberian margin, which show differences between 1.5 °C and 4 °C for the LGM in relation to present-day temperatures (Salgueiro et al., 2014). Also, the LGM was characterized in western Iberia by a predominantly herbaceous environment, with Pinus starting to expand and an almost continuous presence of deciduous tree pollen (Naughton et al., 2007). In addition, the slight expansion of ericaceous communities detected in western Iberia suggests an increase in humidity near the continent at that time (Turon et al., 2003).

All lines of evidence therefore concur in contrasting the paleoclimatic conditions prevalent throughout the accumulation of the Pleistocene Gruta do Caldeirão sequence with those at present. Indeed, the area around Tomar nowadays falls within the temperate Mediterranean zone with warm summers (CSa) of the Köppen-Geiger classification (Beck et al., 2018).

ConclusionsTOP

Our revision of the rodent assemblage from Gruta do Caldeirão thus leads us to draw the following conclusions:

1.  The extinct vole species Microtus (Iberomys) brecciensis is not present. The material previously ascribed to this subgenus can be ascribed in its entirety to the extant vole species Microtus (Iberomys) cabrerae.
2.  The extinct hamster Allocricetus bursae is present in layer K, and three vole species (Chionomys nivalis, Microtus arvalis and Microtus agrestis) that are not currently found in the area also occur in the sequence.
3.  The bioclimatic model agrees with the magnetic susceptibility data in suggesting colder and more humid conditions for the regional LGM climate, in agreement with the SST and pollen data for the western Iberian margin.

ACKNOWLEDGMENTSTOP

This manuscript is part of a José Castillejo project (CAS18/00095) of the Spanish Ministry of Science, Innovation and Universities. J.M.L.-G was supported by a Ramón y Cajal contract (RYC-2016-19386) with financial sponsorship from the Spanish Ministry of Science, Innovation and Universities. Support for the Gruta do Caldeirão research has been provided by the project “Archaeology and Evolution of Early Humans in the Western Façade of Iberia” (PTDC/HAR-ARQ/30413/2017), funded by the FCT (Fundação para a Ciência e a Tecnologia, Portugal). We also want to thank Rupert Glasgow for reviewing the English language of the manuscript.

 

ReferencesTOP


Ayarzagüena, J. & López-Martínez, N. (1976). Estudio filogenético y comparativo de Microtus cabrerae y Microtus brecciensis. Doñana, Acta Vertebrata, 3: 181–204.
Bañuls-Cardona, S. (2017). Human impact on small-mammals from Late Glacial to late Holocene of western Mediterranean region: new environmental and climate approach. PhD Thesis, Università degli Studi di Ferrara, 218 pp.
Barbosa, S.; Paupéiro, J.; Pavlova, S.V.; Alves, P.C. & Searle, J.B. (2018). The Microtus voles: Resolving the phylogeny of one of the most speciose mammalian genera using genomics. Molecular Phylogenetics and Evolution, 125: 85–92. https://doi.org/10.1016/j.ympev.2018.03.017
Barroso Ruiz, C.; Desclaux, E. & Abbassi, M. (2006). Les rongeurs (Mammalia, Rodentia) du Pléistocène supérieur de la Grotte du Boquete de Zafarraya. In: La Grotte du Boquete de Zafarraya (Barroso Ruiz, C. & de Lumley, H., Eds.), Consejería de Cultura Junta de Andalucía, Sevilla, 927–977.
Beck, H.E.; Zimmermann, N. E.; McVicar, T. R.; Vergopolan, N.; Berg, A. & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Nature Scientific Data. https://doi.org/10.1038/sdata.2018.214
Brunet-Lecomte, P. & Póvoas, L. (1993). Voles (Arvicolidae, Rodentia) from Caldeirão Cave (Tomar, Portugal). Arquivos do Museu Bocage, 24: 409–414.
Chaline, J. (1972). Les rongeurs du Pleistocène moyen et supérieur de France. Cahiers de Paléontologie C.N.R.S., Paris, 410 pp.
Cuenca-Bescós, G.; Canudo, J.I. & Laplana, C. (1995). Los Arvicólidos (Rodentia, Mammalia) de los niveles inferiores de Gran Dolina (Pleistoceno Inferior, Atapuerca, Burgos, España). Revista Española de Paleontología, 10: 202–218.
Cuenca-Bescós. G.; Canudo, J.I. & Laplana, C. (1999). Análisis bioestratigráfico de los roedores del Pleistoceno medio del yacimiento de Galeria (Sierra de Atapuerca, Burgos). In: Atapuerca: Ocupaciones humanas y paleoecología del yacimiento de Galeria (Carbonell E., Rosas A. & Díez Fernández-Lomana J.C., Eds.), Junta de Castilla y León, Burgos, 189–210.
Cuenca-Bescós, G.; Martínez, I.; Mazo, C.; Sauqué, V.; Ramón del Río, D.; Rabal Garcés R. & Canudo. J.I. (2010a). Nuevo yacimiento de vertebrados del Cuaternario del sur del Ebro en Aguilón, Zaragoza, España. III Congreso Ibérico de Paleontología, 6–8.
Cuenca-Bescós, G.; Rofes, J.; López-García, J.M.; Blain H.-A.; De Marfà R.; Galindo-Pellicena M.A.; Bennàsar-Serra M.L.; Melero-Rubio M.; Arsuaga J.L.; Bermúdez de Castro, J.M. & Carbonell, E. (2010b). Biochronology of Spanish Quaternary small vertebrate faunas. Quaternary International, 212: 109–119. https://doi.org/10.1016/j.quaint.2009.06.007
Cuenca-Bescós, G.; López-García, J.M.; Galindo-Pellicena, M.A.; García-Perea, R.; Gisbert, J.; Rofes, J. & Ventura, J. (2014). The Pleistocene history of Iberomys, an endangered endemic rodent from South Western Europe. Integrative Zoology, 9:481 497. https://doi.org/10.1111/1749-4877.12053
Davis, S.J.M. (2002). The mammals and birds from the Gruta do Caldeirão, Portugal. Revista Portuguesa de Arqueologia, 5: 29–98.
Davis, S.J.M.; Robert, I. & Zilhão, J. (2007). Caldeirão cave (Central Portugal) - whose home? Hyaena, man, bearded vulture. Courier-Forschungsinstitut Senckenberg, 259: 213–226.
Ellwood, B.B.; Zilhão, J.; Harrold, F.B.; Balsam, W.; Burkart, B.; Long, G.J.; Debenath, A. & Bouzouggar, A. (1998). Identification of the Last Glacial Maximum in the Upper Paleolithic of Portugal using Magnetic susceptibility measurements of Caldeirão cave sediments. Geoarchaeology: An International Journal, 13: 55–71. https://doi.org/10.1002/(SICI)1520-6548(199801)13:1<55::AID-GEA4>3.0.CO;2-7
Fagoaga, ,A.; Ruiz-Sánchez, F.J.; Laplana, C.; Blain, H.-A.; Marquina,, R.; Marin-Monfort,, M.D. & Galván, B. (2018). Palaeoecological implications of Neanderthal occupation at Unit Xb of El Salt (Alcoi, eastern Spain) during MIS 3 using small mammals proxy. Quaternary International, 481: 101–112. https://doi.org/10.1016/j.quaint.2017.10.024
Fernández-García, M. & López-García, J.M. (2013). Palaeoecology and biochronology based on the rodent analysis from the Late Pleistocene/Holocene of Toll Cave (Moià, Barcelona). Spanish Journal of Palaeontology, 28: 227–238.
Fernández-García, M.; López-García, J.M.; Bennàsar, M.; Gabucio, M.J.; Bargalló, A.; Chacón, M.G.; Saladié, P.; Vallverdú, J.; Vaquero, M. & Carbonell. E. (2018). Paleoenvironmental context of Neanderthal occupations in northeastern Iberia: The small-mammal assemblage from Abric Romaní (Capellades, Barcelona, Spain). Palaeogeography Palaeoclimatology Palaeoecology, 506: 154–167. https://doi.org/10.1016/j.palaeo.2018.06.031
Gil, E. & Lanchares, E. (1988). Los roedores del yacimiento musteriense de la Cueva de Gabasa (Pirineo Aragonés). Interés paleoecológico. Geogaceta, 3: 5–7.
Guillem Calatayud, P. (1995). Paleontología continental: microfauna. El Cuaternario del País Valenciano. Universitat de Valencia and Asociación Española para el Estudio del Cuaternario, 227–233.
Guillem Calatayud, P. (2001). Los micromamíferos y la secuencia climática del Pleistoceno Medio, Superior y Holoceno, en la fachada central mediterránea. In: De neandertales a cromañones. El inicio del poblamiento humano en las tierras valencianas (-Villaverde, V., Ed.), Universitat de Valencia, Valencia, 57–72.
Hanquet, C. (2011). Évolution des Paléoenvironnements et des Paléoclimats au Pléistocène moyen, en Europe méridionale, d’après les faunes de micromammifères.PhD Thesis, Université Montpellier III-Paul Valéry, 342 pp.
Hernández-Fernández, M. (2001a). Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecololgy and Biogeography, 10: 189–204. https://doi.org/10.1046/j.1466-822x.2001.00218.x
Hernández-Fernández, M., (2001b). Análisis paleoecológico y paleoclimático de las sucesiones de mamíferos del Plio-Pleistoceno ibérico. PhD Thesis. Universidad Complutense de Madrid, 379 pp.
Hernández-Fernández, M. & Peláez-Campomanes, P. (2005). Quantitative palaeoclimatic inference based on mammal faunas. Global Ecology and Biogeography, 14:39–56. https://doi.org/10.1111/j.1466-822X.2004.00125.x
Hernández-Fernández, M.; Álvarez-Sierra, M.A. & Peláez--Campomanes, P. (2007). Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in Southwestern Europe during the Plio-Pleistocene. Palaeogeography Palaeoclimatology Palaeoecology, 251: 500–526. https://doi.org/10.1016/j.palaeo.2007.04.015
Jeannet, M. (2000). Gruta da Figueira Brava. Les rongeurs. Memorias da Academia das Ciencias de Lisboa, Classe de Ciencias, 38: 179–243.
Kryštufek, B.; Bukhnikashvili, A.; Sozen, M. & Isfendiyaroglu, S. (2016). Cricetulus migratorius. The IUCN Red List of Threatened Species 2016: e.T5528A115073390. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T5528A22391440.en
Laplana, C. & Sevilla, P. (2013). Documenting the biogeographic history of Microtus cabrerae through its fossil record. Mammal Review, 43: 309–322. https://doi.org/10.1111/mam.12003
Laplana, C.; Blain, H.-A.; Sevilla, P.; Arsuaga, J-L.; Baquedano, E. & Pérez-González, A. (2013). Un assemblage de petits vertébrés hautement diversifié de la fin du MIS 5 dans un environnement montagnard au centre de l’Espagne (Cueva de camino, Pinilla del Valle, Communauté Autonome de Madrid). Quaternaire, 24: 207–216 https://doi.org/10.4000/quaternaire.6617
López-García, J.M. (2011). Los micromamíferos del Pleistoceno Superior de la Península Ibérica. Evolución de la diversidad taxonómica y cambios paleoambientales. Editorial Académica Española, 416 pp.
López-García, J. & Cuenca-Bescós, G. (2012). Changes in the geographical distribution of Microtus (Iberomys) cabrerae (Thomas, 1906) from the Late Pleistocene to the Holocene. Spanish Journal of Palaeontology, 27: 117–124.
López-García, J.M.; Blain, H.-A.; Cuenca-Bescós, G.; Ruiz-Zapata, M.B.; Dorado-Valiño, M.; Gil-García, M.J.; Valdeolmillos, A.; Ortega, A.I.; Carretero, J.M.; Arsuaga, J.L.; Bermúdez de Castro, J.M. & Carbonell, E. (2010a). Palaeoenvironmental and paleoclimatic reconstruction of the Latest Pleistocene of El Portalón Site, Sierra de Atapuerca, northwestern Spain. Paleogeography, Paleoclimatology, Paleoecology, 292: 453–464. https://doi.org/10.1016/j.palaeo.2010.04.006
López-García, J.M.; Blain, H.-A.; Allué, E.; Bañuls, S.; Bargalló, A.; Martín, P.; Morales, J.I.; Pedro, M.; Rodríguez, A.; Solé, A. & Oms, F.X. (2010b). First fossil evidence of an “interglacial refugium” in the Pyrenean region. Naturwissenschaften, 97: 753–761. https://doi.org/10.1007/s00114-010-0695-6
López-García, J.M.; Blain, H.-A.; Cuenca-Bescós, G. & Arsuaga, J.L. (2008). Chronological, environmental and climatic precisions on the Neanderthal site of the Cova del Gegant (Sitges, Barcelona, Spain). Journal of Human Evolution, 55, 1151–1155. https://doi.org/10.1016/j.jhevol.2008.08.001
López-García, J.M.; Cuenca-Bescós, G.; Finlayson, C.; Brown, K. & Giles Pacheco, F. (2011a). Palaeoenvironmental and palaeoclimatic proxies of the Gorham’s cave small mammal sequence, Gibraltar, southern Iberia. Quaternary International, 243: 137–142. https://doi.org/10.1016/j.quaint.2010.12.032
López-García, J.M.; Blain, H-A.; Cuenca-Bescós, G.; Alonso, C.; Alonso, S. & Vaquero, M. (2011b). Small vertebrates (Amphibia, Squamata, Mammalia) from the late Pleistocene-Holocene of the Valdavara-1 cave (Galicia, northwestern Spain). Geobios, 44: 253–269. https://doi.org/10.1016/j.geobios.2010.10.001
López-García, J.M.; Blain, H.-A.; De Marfà, R.; García, A.; Bennàsar, M. & Cuenca-Bescós, G. (2011c). Small-mammals from the Middle Pleistocene layers of the Sima del Elefante (Sierra de Atapuerca, Burgos, northwestern Spain). Geologica Acta, 9, 29–43.
López-García, J.M.; Blain, H.-A.; Bennàsar, M.; Euba, I.; Bañuls, S.; Bischoff, J.; López-Ortega, E.; Saldié, P.; Uzquiano, P. & Vallverdú, J. (2012a). A multiproxy reconstruction of the palaeoenvironment and palaeoclimate of the Late Pleistocene in northeastern Iberia: Cova dels Xaragalls, Vimbodí-Poblet, Paratge Natural de Poblet, Catalonia. Boreas, 41: 235–249. https://doi.org/10.1111/j.1502-3885.2011.00234.x
López-García, J.M.; Blain, H.-A.; Sanz, M. & Daura, J. (2012b). A coastal reservoir of terrestrial resources for Neanderthal populations in north-eastern Iberia: palaeoenvironmental data inferred from the small-vertebrate assemblage of Cova del Gegant, Sitges, Barcelona. Journal of Quaternary Science, 27: 105–113. https://doi.org/10.1002/jqs.1515
López-García, J.M.; Berto, C.; Luzi, E.; Dalla Valle, C.; Bañuls-Cardona, S. & Sala, B. (2015). The genus Iberomys (Chaline, 1972) (Rodentia, Arvicolinae, Mammalia) in the Pleistocene of Italy. Italian Journal of Geosciences, 134: 162–169. https://doi.org/10.3301/IJG.2014.48
López-García, J.M.; Fernámdez-García, M.; Blain, H.-A.; Sanz, M. & Daura, J. (2016). MIS 5 environmental and climatic reconstruction in northeastern Iberia using the small-vertebrate assemblage from the terrestrial sequence of Cova del Rinoceront (Castelldefels, Barcelona). Palaeogeography Palaeoeology Paleoclimatology, 451: 13–22. https://doi.org/10.1016/j.palaeo.2016.03.015
López-García, J.M.; Blain, H.-A.; Sanz, M.; Daura, J. & Zilhão. J. (2018). Refining the environmental and climatic background of the Middle Pleistocene human cranium from Gruta da Aroeira (Torres Novas, Portugal). Quaternary Science Reviews, 200; 367–375. https://doi.org/10.1016/j.quascirev.2018.10.003
Luzi, E. (2018). Morphological and morphometric variations in Middle and Late Pleistocene Microtus arvalis and Microtus agrestis populations: chronological insight, evolutionary trends and palaeoclimatic and palaeoenvironmental inferences. PhD Thesis, Universitat Rovira i Virgili, 203 pp.
Luzi, E. & López-García, J.M. (2019). Patterns of variation in Microtus arvalis and Microtus agrestis populations from Middle to Late Pleistocene in southwestern Europe. Historical Biology, 31: 535–543. https://doi.org/10.1080/08912963.2017.1375490
Martin, R. (1987). Notes on the classification of some North American fossil Microtus. Journal of Vertebrate Paleontology, 7: 270–283. https://doi.org/10.1080/02724634.1987.10011660
Moreno-García, A. & Pimenta, C. (2002). Chapter 6. The Paleofaunal Context. In : Portrait of the Artist as a Child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho and its archaeological context (Zilhão, J. & Trinkaus, E., Eds.), Instituto Português de Arqueologia, Lisboa, 112–131.
Naughton, F.; Sanchez-Goñi, M.F.; Despart, S.; Turon, J.-L.; Duprat, J.; Malaizé, B.; Joli, C.; Cortijo, E.; Drago, T. & Freitas, M.C. (2007). Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Marine Micropaleontology, 62: 91–114. https://doi.org/10.1016/j.marmicro.2006.07.006
Palomo, J.L.; Gisbert, J. & Blanco, J.C. (2007). Atlas de los Mamíferos Terrestres de España. Dirección General para la Biodiversidad-SECEM-SECEMU, Madrid, 586 pp.
Paupério, J.; Vale-Gonçalves, H.M.; Cabral, J.A.; Mira, A, & Bencatel, J. (2017). Roedores. In: Atlas de Mamíferos de Portugal (Bencatel, J.; Álvares, F.; Moura, A. E. & Barbosa, A. M., Eds.), Universidade de Évora, Portugal, 115–143.
Pita, R., Luque-Larena, J. J., Beja, P., Mira, A. (2017). Topillo de Cabrera - Microtus cabrerae. In: Enciclopedia Virtual de los Vertebrados Españoles (Sanz, J. J. & Barja, I. Eds.), Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/
Póvoas, L.; Zilhão, J.; Chaline, J. & Brunte-Lecomte, P. (1992). La faune de rongeurs du Pléistocène supérieur de la Grotte de Caldeirão (Tomar, Portugal). Quaternaire 3: 40–47. https://doi.org/10.3406/quate.1992.1971
Rasmussen, O.S.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B. ; Cvijanovic, I. ; Dahl-Jensen, D. ; Johnsen, S.J. ; Fischer, H. ; Gkinis, V. ; Guillevic, M. ; Hoek, W.Z. ; Lowe, J.J. ; Pedro, J.B. ; Popp, T. ; Seierstad, I.K. ; Steddensen, J.P. ; Svensson, A.M. ; Vallelonga, P. ; Vinther, B.M. ; Walker, M.J.C. ; Wheatley, J.J. & Winstrup, M. (2014). A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106: 14–28. https://doi.org/10.1016/j.quascirev.2014.09.007
Sala, M.T.N.; Arsuaga, J.L.; Laplana, C.; Ruiz Zapata, B.; Gil García, M.J.; García, N.; Aranburu, A. & Algaba, M. (2011). Un paisaje de la Meseta durante el Pleistoceno Superior. Aspectos paleontológicos de la Cueva de la Zarzamora (Segovia, España). Boletín de la Real Sociedad Española de Historia Natural, 105: 67–85.
Salgueiro, E.; Naughton, F.; Voelker, A.H.L.; de Abreu, L.; Alberto, A.; Rossignol, L.; Duprat, J.; Magalhães, V.H.; Vaqueiro, S.; Turon, J.-L. & Abrantes, F. (2014). Past circulation along the western Iberian margin: a time slice vision from the Last Glacial to the Holocene. Quaternary Science Reviews, 106: 316–329. https://doi.org/10.1016/j.quascirev.2014.09.001
Sesé, C. (1994). Paleoclimatical Interpretation of the Quaternary small mammals of Spain. Geobios, 27: 753–767. https://doi.org/10.1016/S0016-6995(94)80060-X
Sesé, C. & Ruiz-Bustos, A. (1992). Nuevas faunas de micromamíferos del Pleistoceno del Norte de la Provincia de Madrid (España). Boletín de la Real Sociedad Española de Historia Natural, 87: 115–139.
Sesé, C.; Rubio-Jara, S.; Panera, J. & Pérez-González, A. (2011). Micromamíferos del Pleistoceno Superior del yacimiento de PRERESA en el valle del Manzanares y su contribución a la reconstrucción paleoambiental de la cuenca de Madrid durante el Pleistoceno. Estudios Geológicos, 67: 471–494. https://doi.org/10.3989/egeol.40516.203
Sesé, C. & Sevilla, P. (1996). Los micromamíferos del Cuaternario peninsular español: cronoestratigrafía e implicaciones bioestratigráficas. Revista Española de Paleontología, N°Extraordinario:278–287.
Sesé, C. & Soto, E. (1988). Los Micromamíferos (Rodentia, Insectívora, Lagomorpha). In: La Cueva de Ambrosio (Almeria, Spain) y su posición cronoestratigráfica en el Mediterráneo occidental (Ripoll López, S., Ed.), BAR International Series. 462, 157–168.
Trinkaus, E.; Bailey, S.E. & Zilhão, J. (2001). Upper Palaeolithic human remains from Gruta do Caldeirão, Tomar, Portugal. Revista Portuguesa de Arqueologia, 4: 5–17.
Turon, J.-L.; Lézine, A.M. & Denèfle, M. (2003). Land-sea correlations for the last glaciation inferred from a pollen and dinocyst record from Portuguese margin. Quaternary Research, 59: 88–96. https://doi.org/10.1016/S0033-5894(02)00018-2
Van Der Meulen A.J. (1973). Middle Pleistocene smaller mammals from the Monte Peglia (Orvieto, Italy) with special reference to the phylogeny of Microtus (Arvicolidae, Rodentia). Quaternaria, 17: 1–144.
Zilhão, J. (1992). Gruta do Caldeirão O Neolítico Antigo. Instituto Português do Património Arquitectónico e Arqueológico, Lisboa, 326 pp.
Zilhão, J. (1997). O Paleolítico superior da Estremadura portuguesa. Edições Colibri, Lisboa, 1160 pp.
Zilhão, J. & Almeida, F. (2002). Chapter 3. The Archaeological Framework. In: Portrait of the Artist as a Child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho and its archaeological context (Zilhão, J. & Trinkaus, E., Eds.), Instituto Português de Arqueologia, Lisboa, 29–57.
Zilhão, J.; Angelucci, D.E.; Araújo Igreja, M.; Arnold, L.J.; Badal, E.; Callapez, P.; Cardoso, J.L.; d’Errico, F.; Daura, J.; Demuro, M.; Deschamps, M.; Dupont, C.; Gabriel, S.; Hoffmann, D.L.; Leoinha, P.; Matias, H.; Monge Soares, A.M.; Nabais, M.; Portela, P.; Queffelec, A.; Rodrigues, P. & Souto, P. (2020). Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, eaaz7943. http://doi.org/10.1126/science.aaz7943



Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista estudios.geologicos@igeo.ucm-csic.es

Soporte técnico soporte.tecnico.revistas@csic.es