Estudios Geológicos, Vol 62, No 1 (2006)

Mineralogía y geoquímica del esqueleto de los mastodontes de los yacimientos Batallones 1, 2 y 5. Implicaciones tafonómicas


https://doi.org/10.3989/egeol.066216

L. Merino
Departamento de Paleobiología. Museo Nacional de Ciencias Naturales., España

J. Morales
Departamento de Paleobiología. Museo Nacional de Ciencias Naturales., España

Resumen


Se han realizado análisis petrográficos y geoquímicos de restos óseos fósiles (costillas, esmaltes y dentinas) de mastodontes de los yacimientos miocenos Batallones 1, 2 y 5 con el fin de conocer su historia diagenética. Mediante difracción de rayos X se ha comprobado que el hidroxiapatito original ha sido sustituido por francolita (carbonato fluorapatito), salvo en los esmaltes que no ha variado. La calcita es el mineral autigénico más abundante que rellena los poros de los huesos. El estudio de las muestras óseas de los tres yacimientos señala que durante el proceso de fosilización sufren un incremento de la cristalinidad, así como una pérdida de componentes mayoritarios y un enriquecimiento, en general, de elementos traza. Los procesos diagenéticos han modificado la composición química original de los huesos estudiados, aunque los análisis revelan que la composición de los mismos es similar en los citados yacimientos.

Palabras clave


Procesos diagenéticos;francolita;cristalinidad;mastodontes;Batallones

Texto completo:


PDF

Referencias


Astibia, H., Herrero, J. M. y Elorza, J. J. (1990). An example of petrographic microscopy and X-Ray diffraction techniques as tools in vertebrate taphonomic analysis of some Spanish fossil material. Com. Reunión Tafonomía Fosilización, 27-39.

Barker, M. J., Clarke, J. B. y Martill, D. M. (1997). Mesozoic reptile bones as diagenetic windows. Bull. Soc. Géol. France, 168: 535-545.

Bartsiokas, A. y Middleton, A. P. (1991). Characterization and dating of recent and fossil bone by X-ray diffraction. J. Archaeol. Sci., 17: 63-72.

Berreteaga, A., Badiola, A., Astibia, H., Pereda Suberbiola, X., Elorza, J., Etxebarría, N. y Álvarez, A. (2004). Estudio geoquímica de fósiles de vertebrados de varias localidades del Cretácico superior y Paleógeno de los Pirineos occidentales. Geogaceta, 36: 171-174.

Bertram, C. J., Elderfield, H., Aldridge, R. J. y Conway Morris, S. (1992). 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils. Earth Planet. Sci. Letters, 113: 239-249.

Blumenthal, N. C., Betts, F. y Posner, A. S. (1975). Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif. Tiss. Res., 18: 81-90. doi:10.1007/BF02546228

Bonar, L. C., Roufosse, A. H., Sabine, W. K., Grynpas, M. D. y Glimcher, M. J. (1983). X-ray diffusion studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif. Tiss. Int., 35: 202-209. doi:10.1007/BF02405032

Calvo, J. P., Ordóñez, S., García del Cura, M. A., Hoyos, M., Alonso, A., Sanz, E. y Rodríguez Aranda, J. P. (1989). Sedimentología de los complejos lacustres miocenos de la Cuenca de Madrid. Acta Geol. Hisp., 24: 281-298.

Carlson, S. J. (1990). Vertebrate dental structures. En Skeletal biomineralization: patterns, processes and evolutionary trends (J. G. Carter, ed.). Vol. I. Van Nostrand Reinhold, New York, 531-556.

Denys, C., Williams, C. T., Dauphin, Y., Andrews, P. y Fernández- Jalvo, Y. (1996). Diagenetical changes in Pleistocene small mammal bones from Olduvai Bed I. Palaeogeogr. Palaeoclimatol. Palaeoecol., 126: 121-134. doi:10.1016/S0031-0182(97)88905-5

Elorza, J., Astibia, H., Murelaga, X. y Pereda-Suberbiola, X. (1999). Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Laño, Iberian Peninsula): microstructural, petrological and geochemical features. Cretaceous Res., 20: 169-187. doi:10.1006/cres.1999.0144

Hassan, A. A., Termine, J. D. y Haynes, C. V. (1977). Mineralogical studies on bone apatite and their implications for radiocarbon dating. Radiocarbon, 19: 364-374.

Henderson, P., Marlow, C. A., Molleson, T. I. y Williams, C. T. (1983). Patterns of chemical change during fossilization. Nature, 306: 358-360. doi:10.1038/306358a0

Hernández, M. E. y Fernández, L. (2002). Presencia de arsénico de origen natural en las aguas subterráneas del acuífero detrítico del Terciario de Madrid. Bol. Geol. Miner., 113 (2): 119-130.

Kyle, J. H. (1986). Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth. The implications of palaeodietay research. J. Archaeol. Sci., 13: 403-416. doi:10.1016/0305-4403(86)90011-7

Lécuyer, C., Bogey, C., García, J. P., Grandjean, P., Barrat, J. A., Floquet, M., Bardet, N. y Pereda Suberbiola, X. (2003). Stable isotope composition and rare Herat element contento f vertebrate remains from the Late Cretaceous of northern Spain (Laño): dit the environmental record survive? Palaeogr., Palaeoclimatol., Palaeoecol., 193: 457-471 (y Corrigendum, Palaeogeogr., Palaeoclimatol., Palaeoecol., 196: 427-428). doi:10.1016/S0031-0182(03)00454-1

Lindholm, R. C. y Finkelman, R. B. (1972). Calcite staining: semicuantitative determination of ferrous iron. J. Sed. Petrol., 42: 239-245.

Lucas, J. y Prévôt, L. E. (1991). Phosphates and fossil preservation. En Taphonomy. Releasing the data locked in the fossil record (P. A. Allison y D. E. G. Briggs, ed.). Plenum Press, 389-409.

Martín Ramos, J. D. (1994). PLV. Programa para la interpretación de diagramas de polvo. D-legal M-11719. Registro 08605.

Merino, L. (2000). Mineralogía y geoquímica del esqueleto de mamíferos del Neógeno español. Consejo Superior de Investigaciones Científicas, Madrid, 245 pp.

Michel, V., Ildefonse, P. y Morin, G. (1995). Chemical and structural in Cervus elaphus tooth enamels during fossilization (Lazaret cave): a combined IR and XRD Rietveld analysis. App. Geochem., 10: 145-159. doi:10.1016/0883-2927(95)00001-Z

Molleson, T. I. (1990). The accumulation of trace metals in bone during fossilization. En Trace Metals and Fluoride in Bones and Teeth (N. D. Priest y F. L. Van de Vyver, ed.), CRC Press, 341-365.

Morales, J., Alcalá, L., Álvarez-Sierra, M. A. y col. (2004). Paleontología del sistema de yacimientos de mamíferos miocenos del Cerro de los Batallones, Cuenca de Madrid. Geogaceta, 35: 139-142.

Morales, J., Capitán, J., Calvo, J. P. y Sesé, C. (1992). Nuevo yacimiento de vertebrados del Mioceno superior al Sur de Madrid (Cerro Batallones, Torrejón de Velasco). Geogaceta, 12: 77-80. Newesely, H. (1989). Fossil bone apatite. App. Geochem., 4: 233-245.

Périnet, G., Lafont, R. y Petit-Maire, N. (1975). Premiers résultats concernants les essais de fossilisation d’un ossement en laboratoire. C. R. Acad. Sci. Paris, 280: 1531-1533.

Person, A., Bocherens, H., Saliège, J. F., Paris, F., Zeitoun, V. y Gérard, M. (1995). Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J. Archaeol. Sc., 22: 211-221. doi:10.1006/jasc.1995.0023

Piepenbrink, H. (1989). Examples of chemical changes during fossilisation. App. Geochem., 4: 273-280. doi:10.1016/0883-2927(89)90029-2

Pozo, M. y Calvo, J. P. (2004). Mineralogía y geoquímica isotópica de facies carbonáticas del Cerro de los Batallones (Cuenca de Madrid). Implicaciones paleoambientales. Macla, 2: 31-32.

Pozo, M., Calvo, J. P., Silva, P. G., Morales, J., Peláez-Campomanes, P. y Nieto, M. (2004). Geología del sistema de yacimientos de mamíferos miocenos del Cerro de los Batallones, Cuenca de Madrid. Geogaceta, 35: 143-146.

Schoeninger, M. J., Moore, K. M., Murray, M. L. y Kingston, J. D. (1989). Detection of bone preservation in archaeological and fossil samples. App. Geochem., 4: 281-292. doi:10.1016/0883-2927(89)90030-9

Sillen, A. (1986). Biogenic and diagenetic Sr/Ca in Plio- Pleistocene fossils of the Omo Shungura Formation. Paleobiology, 12: 311-323.

Subirà, M. E., Safont, S. y Malgosa, A. (1996). The role of zinc in diet reconstruction and its diagenesis. TD News Taphonomy and Diagenesis Newsletter. Special issue. Résumés 3ème Conf. Internationale sur la Diagenèse de l’Os. Paris, 5: 60.

Toyoda, K. y Tokonami, M. (1990). Difusión of rareearth elements in fish teeth from deep-sea sediments. Nature, 345: 607-609. doi:10.1038/345607a0

Tuross, N., Behrensmeyer, A. K., Eanes, E. D., Fisher, L. W. y Hare, P. E. (1989). Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. App. Geochem., 4: 261-270. doi:10.1016/0883-2927(89)90027-9

Williams, C. T. y Marlow, C. A. (1987). Uranium and thorium distribution in fossil bones from Olduvai Gorge, Tanzania and Kanam, Kenya. J. Archaeol. Sci., 14: 297-309. doi:10.1016/0305-4403(87)90018-5

Williams, C. T. y Potts, P. J. (1988). Element distribution maps in fossil bones. Archaeometry, 30 (2): 237-247. doi:10.1111/j.1475-4754.1988.tb00450.x




Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista estudios.geologicos@igeo.ucm-csic.es

Soporte técnico soporte.tecnico.revistas@csic.es