Estudios Geológicos, Vol 65, No 1 (2009)

La dorsal NE de Tenerife: hacia un modelo del origen y evolución de los rifts de islas oceánicas


https://doi.org/10.3989/egeol.39755.056

J. C. Carracedo
Estación Volcanológica de Canarias, IPNA-CSIC, La Laguna, España

H. Guillou
Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS, Francia

E. Rodríguez Badiola
Dpto. Geología, Museo Nacional de Ciencias Naturales, CSIC, Madrid, España

F. J. Pérez-Torrado
Dpto. Física-Geología, Universidad de Las Palmas de Gran Canaria, España

A. Rodríguez González
Dpto. Geología, Museo Nacional de Ciencias Naturales, CSIC, Madrid, España

R. Paris
Géolab UMR 6042 CNRS, Clermont-Ferrand, Francia

V. Troll
Uppsala University, Suecia

S. Wiesmaier
Trinity College, Dublin, Irlanda

A. Delcamp
Trinity College, Dublin, Irlanda

J. L. Fernández-Turiel
Instituto de Ciencias de la Tierra Jaume Almera, CSIC, España

Resumen


El Rift NE de Tenerife, conocido localmente como la Dorsal de La Esperanza, es un excelente ejem plo de un rift persistente y recurrente. Su estudio ha aportado evidencias significativas del origen y diná mica de este tipo de estructuras volcánicas.

Los rifts son posiblemente las estructuras más relevantes en la geología de las islas volcánicas oceánicas: 1. Controlan, tal vez desde su inicio, la construcción de los edificios insulares; 2. Son elementos sustanciales en la configuración (forma y topografía) de estas islas; 3. Dan origen a sus principales formas del relieve y el paisaje; 4. Al concentrar la actividad eruptiva, son asimismo estructuras cruciales en la distribución del riesgo volcánico; 5. Condicionan la distribución de recursos naturales básicos, como el agua subterránea.

En las Canarias están muy bien representados tanto los rifts típicos de los estadios juveniles de desarrollo en escudo, como los más tardíos, correspondientes a las fases de rejuvenecimiento post-ero sivo. El Rift NE es un buen ejemplo de este último tipo de rifts.

El Rift NE se ha desarrollado en tres etapas diferentes separadas por periodos más largos de quiescencia o actividad reducida. La primera etapa, en el Mioceno (datada en 7,26 Ma), se formó como una extensión hacia el NE del escudo central de Tenerife, donde aflora debajo del macizo plioceno de Anaga. La segunda etapa, del Plioceno (datada en 2,71 Ma), sólo ha sido alcanzada en galerías. La tercera etapa se desarrolla en el Cuaternario, con una fase de gran actividad volcánica en el periodo comprendido entre 1,0 Ma y 0,5 Ma, en que se produjeron tres colapsos laterales (Micheque, Güímar y La Orotava). Posteriormente, la actividad eruptiva se hizo más espaciada y los centros eruptivos se dispersaron. Una última fase de renovada actividad se localiza alrededor de los 30-40 ka, con varios centros eruptivos en la parte del rift cercana a la Caldera de Las Cañadas y el complejo volcánico del Teide, y otros anidados en los diferentes valles de colapso (la alineación de Taoro, en el Valle de La Orotava, datada en 27 ka, y la alineación de volcanes de Arafo, Fasnia y Siete Fuentes, de 1705 AD).

La elaboración de una detallada cartografía geológica y geomagnética (utilizando las inversiones del campo magnético terrestre impresas en las lavas) y la datación radioisotópica de las unidades volcanoestratigráficas y magneto-estratigráficas definidas (con 14 edades K/Ar nuevas) ha permitido la reconstrucción de la historia volcánica de esta última fase de desarrollo del Rift NE y la delimitación del tiempo de ocurrencia de los sucesivos colapsos laterales.

En las fases iniciales de esta etapa los centros eruptivos se agrupan apretadamente en el eje del rift y las lavas muestran consistentemente polaridad inversa (correspondiente al cron Matuyama). Los diques muestran tanto polaridad normal como inversa. Sin embargo, en las fases finales tanto las lavas como los diques tienen siempre polaridad normal, correspondiente al cron Brunhes. Algunas secciones concretas están formadas por lavas de polaridad normal, atravesadas por diques que presentan tanto polaridad normal como inversa, correspondiendo, por consiguiente, a algún subcron de polaridad normal dentro del cron Matuyama, de polaridad inversa. En este caso se han definido y datado los subcrones M-B Precursor (819-798 ka) y Jaramillo (1.072-988 ka), que corresponden al Matuyama Superior.

De los tres colapsos laterales que afectaron los flancos del Rift NE, los dos primeros (Micheque y Güímar) fueron esencialmente opuestos y simultáneos (hace 830 ka), posiblemente con el primero iniciando el proceso coincidiendo con una fase de gran actividad eruptiva e intrusiva. El colapso debió dejar el rift en un estado crítico de inestabilidad, lo que ocasionó el subsiguiente deslizamiento gravitatorio de Güímar. La fecha de ocurrencia del colapso de La Orotava no ha podido determinarse con igual precisión, quedando limitada entre 690 ka y 566 ka.

La actividad eruptiva anidada en las sucesivas cuencas de colapso presenta una clara disminución, siendo muy intensa en la cuenca de Micheque, que quedó completamente colmatada, mientras que la de Güímar sólo se rellenó parcialmente y en la de La Orotava apenas hubo relleno a partir de centros anidados. Esto puede explicar la evolución de los magmas en la cuenca de Micheque desde erupciones inicialmente basálticas hasta intermedias y félsicas (traquitas y fonolitas) en las fases finales de relleno. Este proceso no se da en las demás cuencas de colapso ni en el resto del rift, donde las erupciones son consistentemente basálticas fisurales. La ocurrencia de los colapsos laterales en el rift NE parece coincidir con las diversas glaciaciones, sugiriendo que estos colapsos pudieran finalmente producirse como respuesta a los cambios en el nivel del mar.

Los rifts en las Canarias podrían ser la manifestación en superficie de una pluma del manto, generando fracturas primordiales que darían lugar a rifts que actuarían a lo largo de la historia volcánica de las islas. Una vez establecidos, los rifts tienden a desarrollarse manteniendo el mismo sistema de alimentación y el mismo tipo de volcanismo, en forma de erupciones basálticas fisurales. Sin embargo, los colapsos laterales suponen un drástica y brusca ruptura del sistema establecido, que puede dar lugar al emplazamiento y residencia del magma en zonas superficiales y a su diferenciación, dando erupciones intermedias y felsíticas. Por consiguiente, los rifts y sus colapsos laterales actúan como impulsores de variabilidad petrológica en las Canarias, donde los volcanes centrales félsicos aparecen con frecuencia asociados (anidados) a colapsos laterales. En sentido contrario, estos volcanes félsicos pueden actuar como marcadores de colapsos laterales previos.

Palabras clave


Rifts; Dorsal NE de Tenerife; Islas Canarias; dataciones radioisotópicas; colapsos; colapsos laterales y evolución geoquímica; volcanes centrales félsicos y colapsos laterales

Texto completo:


PDF

Referencias


Abdel-Monem, A.; Watkins, N.D. & Gast, P. (1972). Potassium-argon ages, volcanic stratigraphy and geomagnetic polarity history of the Canary Islands: Tenerife, La Palma and Hierro. American Journal of Science, 272: 805-825.

Ablay, G.J. & Marti, J. (2000). Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research, 103: 175-208. doi:10.1016/S0377-0273(00)00224-9

Ancochea, E.; Fúster, J.M.; Ibarrola, E.; Cendrero, A.; Hernán, F.; Cantagrel, J.M. & Jamond, C. (1990). Volcanic evolution of the Island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research, 44: 231-249. doi:10.1016/0377-0273(90)90019-C

Ancochea, E.; Huertas, M.J.; Cantagrel, J.M.; Coello, J.; Fúster, J.M.; Arnaud, N. & Ibarrola, E. (1999). Evolution of the Cañadas Edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands). Journal of Volcanology and Geothermal Research, 88: 177-199. doi:10.1016/S0377-0273(98)00106-1

Ancochea, E.; Brändle, J.L.; Huertas, M.J.; Cubas, C.R. & Hernán, F. (2003). The felsic dikes of La Gomera (Canary Islands): Identification of cone sheet and radial dike swarms. Journal of Volcanology and Geothermal Research, 120: 197-206. doi:10.1016/S0377-0273(02)00384-0

Brown, L.L.; Singer, B.S.; Pickens, J.C. & Jicha, B.R. (2004). Paleomagnetic directions and 40Ar/39Ar ages from the Tatara-San Pedro volcanic complex, Chilean Andes: Lava record of a Matuyama-Brunhes precursor? Journal of Geophysical Research, 109: B12101. doi:10.1029/2004JB003007

Carracedo, J.C. (1975). Estudio paleomagnético de la isla de Tenerife. PhD thesis, Univ. Complutense de Madrid, 265 pp.

Carracedo, J.C. (1979). Paleomagnetismo e historia volcánica de Tenerife. Aula Cultura Cabildo de Tenerife, Tenerife, 81 pp.

Carracedo, J.C. (1994). The Canary Islands: an example of structural control on the growth of large oceanic island volcanoes. Journal of Volcanology and Geothermal Research, 60: 225-242. doi:10.1016/0377-0273(94)90053-1

Carracedo, J.C. (1996). Morphological and structural evolution of the western Canary Islands: Hotspot induced three armed rifts or regional tectonic trends? Journal of Volcanology and Geothermal Research, 72: 151-162. doi:10.1016/0377-0273(95)00080-1

Carracedo, J.C. (1999). Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. Journal of Volcanology and Geothermal Research, 94: 1-19. doi:10.1016/S0377-0273(99)00095-5

Carracedo, J.C.; Rodríguez Badiola, E. & Soler, V. (1992). The 1730 1736 eruption of Lanzarote: an unusually long, high magnitude fissural basaltic eruption in the recent volcanism of the Canary Islands. Journal of Volcanology and Geothermal Research, 53: 239-250. doi:10.1016/0377-0273(92)90084-Q

Carracedo, J.C.; Day, S.; Guillou, H.; Rodríguez Badiola, E.; Canas, J.A. & Pérez-Torrado, F.J. (1998). Hotspot volcanism close to a passive continental margin: the Canary Islands. Geological Magazine, 135: 591-604. doi:10.1017/S0016756898001447

Carracedo, J.C.; Day, S.; Guillou, H. & Gravestock, P. (1999a). Later stages of the volcanic and structural evolution of La Palma, Canary Islands: The Cumbre Nueva giant collapse and the Cumbre Vieja volcano. Geological Society of America Bulletin, 111: 755-768.

Carracedo, J.C.; Day, S.; Guillou, H. & Pérez-Torrado, F.J. (1999b). Giant Quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 94: 169-190. doi:10.1016/S0377-0273(99)00102-X

Carracedo, J.C.; Rodríguez Badiola, E.; Guillou, H.; De la Nuez, J. & Pérez-Torrado, F.J. (2001). Geology and volcanology of La Palma and El Hierro, Western Canaries. Estudios Geológicos, 57: 1-124. doi:10.3989/egeol.01575-6

Carracedo, J.C.; Pérez-Torrado, F.J.; Ancochea, E.; Meco, J.; Hernán, F.; Cubas, C.R.; Casillas, R.; Rodríguez Badiola, E. & Ahijado, A. (2002). Cenozoic Volcanism II: The Canary Islands. In: The Geology of Spain (Gibbons, W. & Moreno, T., eds.). Geological Society of London, London, 439-472.

Carracedo, J.C.; Guillou, H.; Paterne, M.; Scaillet, S.; Rodríguez Badiola, E.; Pérez-Torrado, F.J.; Hansen, A. & Paris, R. (2004). Nested central volcanism related to rift development and giant landsliding in oceanic islands. IAVCEI General Assembly presentation, Pucón, Chile.

Carracedo, J.C.; Rodríguez Badiola, E.; Guillou, H.; Paterne, M.; Scaillet, S.; Pérez-Torrado, F.J.; Paris, R.; Criado, C.; Hansen, A.; Arnay, M.; González Reimers, E.; Fra-Paleo, U. & González Pérez, R. (2006). Los volcanes del Parque Nacional del Teide: El Teide, Pico Viejo y las dorsales activas de Tenerife. Serie Técnica, Organización de Parques Nacionales, Ministerio de Medio Ambiente, Madrid, 388 pp.

Carracedo, J.C.; Rodríguez Badiola, E.; Guillou, H.; Paterne, M.; Scaillet, S.; Pérez-Torrado, F.J.; Paris, R.; Fra-Paleo, U. & Hansen, A. (2007). Eruptive and structural history of Teide Volcano and Rift Zones of Tenerife, Canary Islands. Geological Society of America Bulletin, 119: 1027-1051..1 doi:10.1130/B26087.1

Carracedo, J.C.; Guillou, H.; Rodríguez Badiola, E.; Pérez-Torrado, F.J.; Troll, V.; Delcamp, A.; Paris, R. & Rodríguez González, A. (2008a). Volcanic and Structural History of the NE Rift Zone of Tenerife, Canary Islands, Spain. AGU 2008 Fall Meeting.

Carracedo, J.C.; Pérez-Torrado, F.J.; Rodríguez Badiola, E.; Balcells, R.; Guillou, H.; Scaillet, S.; Troll, V.; Paris, R.; Martín Escorza, C.; Hansen, A. & Rodríguez González, A. (2008b). Nota preliminar sobre las características estructurales del Rift NE de Tenerife (Preliminary results about structural features of the NE rift of Tenerife). Geo-Temas, 10: 1265-1268.

Carracedo, J.C.; Rodríguez Badiola, E.; Guillou, H.; Paterne, M.; Scaillet, S.; Pérez-Torrado, F.J.; Paris, R.; Rodríguez González, A. & Socorro, S. (2008c). El Volcán Teide, Volcanología, interpretación de paisajes e itinerarios comentados. Ed. Saquiro, Santa Cruz de Tenerife, 600 pp.

Carracedo, J.C.; Pérez-Torrado, F.J.; Rodríguez Badiola, E.; Paris, R. & Singer, B.S. (2008d). Fiabilidad de la interpretación de las referencias de erupciones subhistóricas de Tenerife: la erupción pre-holocena de Mña. Taoro (Reliability of interpretation of references in eyewitness accounts to subhistorical eruptions in Tenerife: the pre-Holocene Mña. Taoro eruption). Geo-Temas, 10: 1261-1264.

Coe, R.S.; Singer, B.S.; Pringle, M.S. & Zhao, X. (2004). Matuyama Brunhes reversal and Kamikatsura event on Maui: Paleomagnetic directions, 40Ar/39Ar ages and implications. Earth and Planetary Science Letters, 222: 667-684. doi:10.1016/j.epsl.2004.03.003

Coello, J. (1973). Las series volcánicas en subsuelos de Tenerife. Estudios Geológicos, 29: 491-512.

Delcamp, A.; Petronis, M.S.; Troll, V.R.; Carracedo, J.C.; Wyk de Vries, B. van & Wiesmaier, S. (2008). New paleomagnetic constraints on the evolution of the NE rift zone and associated landslide, Tenerife, Spain. AGU 2008 Fall Meeting.

Dieterich, J.H. (1988). Growth and persistence of Hawaiian volcanic rift zones. Journal of Geophysical Research, 93: 4258-4270 doi:10.1029/JB093iB05p04258

Doell, R.R. & Dalrymple, G.B. (1966). Geomagnetic polarity epochs: a new polarity event and the age of the Brunhes Matuyama boundary. Science, 152: 1060- 1061. doi:10.1126/science.152.3725.1060

Dreyfus, G.B.; Raisbeckc, G.M.; Parrenind, F.; Jouzela, J.; Guyodoa, Y.; Nomadea, S. & Mazaud, A. (2008). An ice core perspective on the age of the Matuyama-Brunhes boundary. Earth and Planetary Science Letters, 274: 151.156.

Edgar, C.J.; Wolff, J.A.; Nichols, H.J.; Cas, R.A.F. & Martí, J. (2002). A complex Quaternary ignimbrite-forming phonolitic eruption: the Poris member of the Diego Hernández Formation (Tenerife, Canary Islands). Journal of Volcanology and Geothermal Research, 118: 99-130. doi:10.1016/S0377-0273(02)00252-4

Elsworth, D. & Day, S.J. (1999). Flank collapse triggered by intrusion: The Canarian and Cape Verde Archipelagoes. Journal of Volcanology and Geothermal Research, 94: 323-340. doi:10.1016/S0377-0273(99)00110-9

Fiske, R.S. & Jackson, E.D. (1972). Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses. Proceedings of the Royal Society of London, 329: 299-326.

Fúster, J.M.; Araña, V.; Brandle, J.L.; Navarro, M.; Alonso, U. & Aparicio, A. (1968). Geología y volcanología de las Islas Canarias: Tenerife. Instituto «Lucas Mallada», CSIC, Madrid, 218 pp.

Gee, M.J.R.; Masson, D.G.; Watts, A.B. & Mitchell, N.C. (2001). Offshore continuation of volcanic rift zones, El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 105: 109-119. doi:10.1016/S0377-0273(00)00241-9

Geldmacher, J.; Hoernle, K.; Bogaard, P.V.D.; Duggen, S. & Werner, R. (2005). New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira Volcanic Provinces: A contribution to the «Great Plume Debate». Earth and Planetary Science Letters, 237: 85-101. doi:10.1016/j.epsl.2005.04.037

Gillot, P.Y.; Soler, V. & Quidelleur, X. (2001). Piling rate and magmatic evolution through time of the Teide volcano (Tenerife, Canary islands). XI Meeting of the European Union of Geosciences, Strasbourg, VPP3: 802.

Guillou, H.; Carracedo, J.C.; Pérez-Torrado, F. & Rodríguez Badiola, E. (1996). K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 73: 141-155. doi:10.1016/0377-0273(96)00021-2

Guillou, H.; Carracedo, J.C. & Day, S.J. (1998). Dating of the upper Pleistocene-Holocene volcanic activity of La Palma using the unspiked K-Ar technique. Journal of Volcanology and Geothermal Research, 86: 137-149. doi:10.1016/S0377-0273(98)00074-2

Guillou, H.; Carracedo, J.C. & Duncan, R.A. (2001). K-Ar, 40Ar/39Ar ages and magnetostratigraphy of Brunhes and Matuyama lava sequences from La Palma Island. Journal of Volcanology and Geothermal Research, 106: 175-194. doi:10.1016/S0377-0273(00)00294-8

Guillou, H.; Carracedo, J.C.; Paris, R. & Pérez-Torrado, F.J. (2004). Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth and Planetary Science Letters, 222: 599-614 doi:10.1016/j.epsl.2004.03.012

Hildenbrand, A.; Gillot, P.Y. & Le Roy, I. (2004). Volcano- tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia). Earth and Planetary Science Letters, 217: 349-365. doi:10.1016/S0012-821X(03)00599-5

Hoernle, K. & Carracedo J.C. (2009). The Canary Islands. In: Encylopedia of Islands (Gillespie, R. & Clague, D., eds). University of California Press, 1.008 pp.

Horng, C.S.; Lee, M.Y.; Pälike, H.; Wei, K.Y.; Liang, W.T.; Iizuka, Y. & Torii, M. (2002). Stronomically calibrated ages for geomagnetic reversals within the Matuyama chron. Earth, Planets and Space, 54: 679-690.

Huertas, M.J.; Arnaud, N.O.; Ancochea, E.; Cantagrel, J.M. & Fúster, J.M. (2002). 40Ar/39Ar stratigraphy of main pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on structural evolution. Journal of Volcanology and Geothermal Research, 115: 351-365. doi:10.1016/S0377-0273(01)00331-6

Ibarrola, E.; Ancochea, E.; Fúster, J.M.; Cantagrel, J.M.; Coello, J.; Snelling, N.J. & Huertas, M.J. (1993). Cronoestratigrafía del Macizo de Tigaiga: evolución de un sector del Edificio Cañadas (Tenerife, Islas Canarias). Boletín de la Real Sociedad Española de Historia Natural (Sección Geología), 88: 57-72.

IGME (1978). Mapa Geológico de España. Hoja La Orotava (1104-3).

Izett, G.A. & Obradovich, J.D. (1994). 40Ar/39Ar age constraints for the Jaramillo Normal Subchron and the Matuyama-Brunhes geomagnetic boundary. Journal of Geophysical Research, 99: 2925-2934. doi:10.1029/93JB03085

Lambeck, K.; Esat, T.M. & Potter, E.K. (2002). Links between climate and sea levels for the past three million years. Nature, 419: 199-206. doi:10.1038/nature01089 PMid:12226674

Lisiecki, L.E. & Raymo, M.E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography, 20: PA1003. doi:10.1029/2004PA001071

Longpré, M.A.; Troll, V.R. & Hansteen, T.H. (2008). Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). Journal of Geophysical Research, 113: B08203. doi:10.1029/2007JB005422

Luongo, G.; Cubellis, E.; Obrizzo, F. & Petrazzuoli, S.M. (1991). A physical model for the origin of volcanism of the Tyrrhenian margin: the case of the Neapolitan area. Journal of Volcanology and Geothermal Research, 48: 173-185. doi:10.1016/0377-0273(91)90041-W

Masson, D.G.; Watts, A.B.; Gee, M.J.R. Urgeles, R.; Mitchell, N.C.; Le Bas, T.P. & Canals, M. (2002). Slope failures on the flanks of the western Canary Islands. Earth Science Reviews, 57: 1-35. doi:10.1016/S0012-8252(01)00069-1

McGuire, W.J. (1996). Volcano instability: A review of contemporary themes. Geological Society, London, Special Publication, 110: 1-23.

McKenzie, D. & Bickle, M.J. (1988). The volume and composition of melt generated extension of the lithosphere. Journal of Petrology, 29: 625-679.

McMurtry, G.M.; Watts, P.; Fryer, G.J.; Smith, J.R. & Imamura, F. (2004). Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Marine Geology, 203: 219-233. doi:10.1016/S0025-3227(03)00306-2

Mitchell, N.C.; Masson, D.G.; Watts, A.B.; Gee, M.J.R. & Urgeles, R. (2002). The morphology of the submarine flanks of volcanic ocean islands: A comparative study of the Canary and Hawaiian hotspot islands. Journal of Volcanology and Geothermal Research, 115: 83-107. doi:10.1016/S0377-0273(01)00310-9

Moore, J.G.; Clague, D.A.; Holcomb, R.T.; Lipman, P.W.; Normark, W.R. & Torresan, M.E. (1989). Prodigious submarine landslides on the Hawaiian ridge. Journal of Geophysical Research, 94: 17465-17484. doi:10.1029/JB094iB12p17465

Navarro, J.M. & Coello, J. (1989). Depressions originated by landslide processes in Tenerife. ESF Meeting on Canarian Volcanism, Lanzarote, 150-152.

Palomo, C.; Acosta, J.; Muñoz, A.; Herranz, P.; Sanz, J.L.; Molinero, J.; Bécares, M.A. & Gómez, R. (1998). Mapa batimorfológico del área norte de la isla de Tenerife. Instituto Español de Oceanografía. Madrid.

Paris, R.; Guillou, H.; Carracedo, J.C. & Pérez-Torrado, F.J. (2005). Volcanic and morphological evolution of La Gomera (Canary Islands), based on new K-Ar ages and magnetic stratigraphy: implications for oceanic island evolution. Journal of the Geological Society of London, 162: 501-512. doi:10.1144/0016-764904-055

Petronille, M.; Goguitchaichvili, A.; Henry, B.; Alva-Valdivia, L.M.; Rosas-Elguera, J.; Urrutia-Fucugauchi, J.; Rodríguez Ceja, M. & Calvo-Rathert, M. (2005). Paleomagnetism of Ar-Ar dated lava flows from the Ceboruco-San Pedro volcanic field (western Mexico): Evidence for the Matuyama-Brunhes transition precursor and a fully reversed geomagnetic event in the Brunhes chron. Journal of Geophysical Research, 110: B08101. doi:10.1029/2004JB003321

Presley, T.K.; Sinton, J.M. & Pringle, M. (1997). Postshield volcanism and catastrophic mass wasting of the Waianae Volcano, Oahu, Hawaii. Bulletin of Volcanology, 58: 597-616. doi:10.1007/s004450050165

Quidelleur, X.; Hildenbrand, A. & Samper, A. (2008). Causal link between Quaternary paleoclimatic changes and volcanic islands evolution. Geophysical Research Letters, 35: L02303. doi:10.1029/2007GL031849

Raisbeck, G.M.; Yiou, F.; Cattani, O. & Jouzel, J. (2006). 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature, 444: 82-84. doi:10.1038/nature05266 PMid:17080088

Shackleton, N.J.; Berger, A. & Peltier, W.R. (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on OPD site 677, Transactions of the Royal Society of Edinburgh, Earth Sciences, 81: 251-261.

Siebert, L. (1984). Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions. Journal of Volcanology and Geothermal Research, 22: 163-197. doi:10.1016/0377-0273(84)90002-7

Singer, B.S.; Relle, M.K.; Hoffman, K.A.; Battle, A.; Laj, C.; Guillou, H. & Carracedo, J.C. (2002). Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. Journal of Geophysical Research, 107: 2307. doi:10.1029/2001JB001613

Singer, B.S.; Relle, M.K.; Hoffman, K.A.; Coe, R.S.; Brown, L.L.; Jicha, B.R.; Mal Pringle, M.S. & Chauvin, A. (2005). Structural and temporal requirements for geomagnetic field reversal deduced from lava flows. Nature, 434: 633-636. doi:10.1038/nature03431 PMid:15800621

Steiger, R.H. & Jäger, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36: 359-362. doi:10.1016/0012-821X(77)90060-7

Swanson, D.A.; Duffield, W.A. & Fiske, R.S. (1976). Displacement of the south flank of the Kilauea volcano: The result of forceful intrusion of magma into the rift zones. U.S. Geological Survey, Professional Paper, 963, 93 pp.

Thirlwall, M.F.; Singer, B.S. & Marriner, G.F. (2000). 39Ar-40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. Journal of Volcanology and Geothermal Research, 103: 247-297. doi:10.1016/S0377-0273(00)00227-4

Urgelés, R.; Masson, D.G, Canals, M.; Watts, A.B. & Le Bas, T. (1999). Recurrent large scale landsliding on the west flank of La Palma, Canary Islands. Journal of Geophysical Research, 104: 25331-25348. doi:10.1029/1999JB900243

Walker, G.P.L. (1986). Koolau dike complex, Oahu: Intensity and origin of a sheeted-dike complex high in a Hawaiian volcanic edifice. Geology, 14: 310-313. doi:10.1130/0091-7613(1986)14<310:KDCOIA>2.0.CO;2

Walker, G.P.L. (1987). The dike complex of Koolau Volcano, Oahu: internal structure of a Hawaiian rift zone. US Geological Survey Professional Paper, 1350: 961-993.

Walker, G.P.L. (1992). «Coherent intrusion complexes» in large basaltic volcanoes -a new structural model. Journal of Volcanology and Geothermal Research, 50: 41-54. doi:10.1016/0377-0273(92)90036-D

Walter, T.R. & Schmincke, H-U. (2002). Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands). International Journal of Earth Sciences, 91: 615-628. doi:10.1007/s00531-001-0245-8

Walter, T.R. & Troll, V.R. (2003). Experiments on rift zone formation in unstable volcanic edifices. Journal of Volcanology and Geothermal Research, 127: 107-120. doi:10.1016/S0377-0273(03)00181-1

Walter, T.R.; Troll, V.R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F. & Van Den Bogaard, P. (2005). Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands. Bulletin of Volcanology, 67: 281-291 doi:10.1007/s00445-004-0352-z

Walter, T.R.; Klügel, A. & Münn, S. (2006). Gravitational spreading and formation of new rift zones on overlapping volcanoes. Terra Nova, 18: 26-33. doi:10.1111/j.1365-3121.2005.00656.x

Watts, A.B. & Masson, D.G. (1995). A giant landslide on the north flank of Tenerife, Canary Islands. Journal of Geophysical Research, 100: 24487-24498. doi:10.1029/95JB02630

White, R. & McKenzie, D. (1989). Magmatism at rift zones- The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94: 7685-7729. doi:10.1029/JB094iB06p07685

Wyss, M. (1980). Hawaiian rifts and recent Icelandic volcanism: expressions of plume generated radial stress fields. Journal of Geophysics, 47: 19-22.




Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista estudios.geologicos@igeo.ucm-csic.es

Soporte técnico soporte.tecnico.revistas@csic.es