Trazabilidad de la señal isotópica del oxígeno desde la lluvia a los espeleotemas en las cuevas de Ortigosa de Cameros (La Rioja, España)

Autores/as

  • M. C. Osácar Dpto. de Ciencias de la Tierra, Universidad de Zaragoza
  • C. Sancho Dpto. de Ciencias de la Tierra, Universidad de Zaragoza
  • A. Muñoz Dpto. de Ciencias de la Tierra, Universidad de Zaragoza
  • M. Bartolomé Instituto Pirenaico de Ecología, CSIC
  • A. Moreno Instituto Pirenaico de Ecología, CSIC
  • A. Delgado-Huertas Instituto Andaluz de Ciencias de la Tierra, CSIC
  • I. Cacho Departament d’Estratigrafia, Paleontologia i Geociències Marines, Universitat de Barcelona

DOI:

https://doi.org/10.3989/egeol.41730.319

Palabras clave:

señal isotópica del oxígeno, calcita espeleotémica, monitorización de cuevas, Norte de la Península Ibérica

Resumen


Durante un año se han monitorizado las cuevas de La Paz y La Viña en el Sistema de Cuevas de Ortigosa de Cameros (NE de la Península Ibérica) para rastrear la señal isotópica del oxígeno desde la lluvia a la calcita espeleotémica, y así valorar la capacidad de esta señal para conservar información medioambiental. Se han comparado las señales isotópicas del oxígeno de los eventos de la lluvia, el agua de goteo (muestreada trimestralmente) y la calcita espeleotémica, precipitada también durante cada trimestre. El goteo en las cuevas responde a la precipitación en invierno, primavera y verano, más estrechamente en los puntos más próximos a la superficie que en los profundos. En otoño hay un retraso entre la lluvia y el goteo, lo que sugiere que el agua permanece por un tiempo en el epikarst, antes de que se reanude el goteo después del verano. Este retraso provoca que la señal isotópica del agua de goteo (media total de δ18O=−8.39‰ V-SMOW) se desvíe de la señal de la lluvia (media de δ18O=−7,41‰ V-SMOW). Por el contrario, en invierno la señal isotópica del agua de goteo es muy semejante a la de la lluvia. La composición isotópica de la calcita espeleotémica (media total de δ18O=−6,83‰ V-PDB) presenta un pequeño desfase (0,62–0,75%) respecto al valor que le correspondería por la composición isotópica del agua de goteo; esto indica que los efectos cinéticos durante la precipitación de la calcita son limitados, por lo que ésta conserva la señal de la lluvia, especialmente en invierno.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Araguás-Araguás, L.; Froehlich, K. & Rozanski, K. (2000). Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes, 14: 1341–1355. http://dx.doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z

Baldini, J.U.L.; McDermott, F. & Fairchild, I.J. (2006). Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records. Chemical Geology, 235: 390–404. http://dx.doi.org/10.1016/j.chemgeo.2006.08.005

Bradley, C.; Baker, A.; Jex, C.N. & Leng, M.J. (2010). Hydrological uncertainties in the modelling of cave drip-water £_18O and the implications for stalagmite palaeoclimate reconstructions. Quaternary Science Reviews, 29: 2201–2214. http://dx.doi.org/10.1016/j.quascirev.2010.05.017

Celle-Jeanton, H.; Travi, Y. & Blavoux, B. (2001). Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales. Geophysical Research Letters, 28: 1215–1218. http://dx.doi.org/10.1029/2000GL012407

Coleman, M.L.; Shepard, T.J.; Durham, J.J.; Rouse, J.E. & Moore, G.R. (1982). Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry, 54: 993–995. http://dx.doi.org/10.1021/ac00243a035

Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133: 1702–1703. http://dx.doi.org/10.1126/science.133.3465.1702

Cruz, F.W.Jr.; Karmanna, I.; Viana, O.Jr.; Burnsb, S.J.; Ferraric, J.A.; Vuilleb, M.; Siald, A.N. &. Moreira, M.Z. (2005). Stable isotope study of cave percolation waters in subtropical Brazil: Implications for paleoclimate inferences from speleothems. Chemical Geology, 220: 245–262. http://dx.doi.org/10.1016/j.chemgeo.2005.04.001

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16: 4 36–468.

Epstein, S. & Mayeda, T. (1953). Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4: 213–224. http://dx.doi.org/10.1016/0016-7037(53)90051-9

Fairchild, I.J.; Smith,C.L.; Baker, A.; Fuller, L.; Spötl, C.; Mattey, D.; McDermott, F. & E.I.M.F. (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75: 105–153. http://dx.doi.org/10.1016/j.earscirev.2005.08.003

Feng, W.; Casteel, R.C.; Banner, J.L. & Heinze-Fry, A. (2014). Oxygen isotope variations in rainfall, drip-water and speleothem calcite from a well-ventilated cave in Texas, USA: Assessing a new speleothem temperature proxy. Geochimica et Cosmochimica Acta, 127: 233–250. http://dx.doi.org/10.1016/j.gca.2013.11.039

Genty, D.; Labuhn, I.; Hoffmann, G.; Danis, P.A.; Mestre, O.; Bourges, F.; Wainer, K.; Massault, M.; Exter, S.V.; Régnier, E.; Orengo, Ph.; Falourd, S. & Minster, B. (2014). Rainfall and cave water isotopic relationships in two South-France sites. Geochimica et Cosmochimica Acta, 131: 323–343. http://dx.doi.org/10.1016/j.gca.2014.01.043

ITGE. (1990). Mapa geológico de España. Escala 1:50.000. 2ª Serie (241) Anguiano, Madrid, Servicio de Publicaciones del Ministerio de Industria y Energía.

Johnston, V.E.; Borsato, A.; Spötl, C.; Frisia, S. & Miorandi, R. (2013). Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change. Climate of the Past, 9: 99–118. http://dx.doi.org/10.5194/cp-9-99-2013

Lachniet, M.S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews, 28: 412–432. http://dx.doi.org/10.1016/j.quascirev.2008.10.021

Luo, W.; Wang, S.; Zeng, G.; Zhu, X. & Liu, W. (2014). Daily response of drip water isotopes to precipitation in Liangfeng Cave, Guizhou Province, SW China. Quaternary International, 349: 153–158. http://dx.doi.org/10.1016/j.quaint.2014.01.043

Mattey, D.; Lowry, D.; Duffet, J.; Fisher, R.; Hodge, E. & Frisia, S. (2008). A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters, 269: 80–95. http://dx.doi.org/10.1016/j.epsl.2008.01.051

Muñoz, A. & Sancho, C. (2008). Monitorización climática de las cuevas de Ortigosa de Cameros (La Rioja): aplicación a la interpretación del registro climático de los espeleotemas holocenos. Zubía, 20: 21–36.

Muñoz, A.; Sen, A.K.; Sancho, C. & Genty, D. (2009). Wavelet analysis of Late Holocene stalagmite records from Ortigosa caves in Northern Spain. Journal of Cave and Karst Studies, 71: 63–72.

Muñoz, A.; Osácar, M.C.; Sancho, C. & Moreno, A. (2010). Dinámica espeleotémica actual en las Cuevas de Ortigosa de Cameros (La Rioja). In: Cuevas: Patrimonio, Naturaleza, Cultura y Turismo (J.J. Durán & F. Carrasco, eds.). Asociación de Cuevas Turísticas Españolas, Madrid, 371–382.

Muñoz, A.; Osácar, M.C.; Sancho, C.; Moreno, A.; Bartolomé, M.; Muñoz, A.; Quindós, L.; Fuente, I.; Sainz, C.; Quindós, J.; Gutiérrez Villoslada, J.L. & Quindós, L.S. (2012). Estudio de la ventilación en las cuevas de Ortigosa de Cameros (La Rioja) mediante la monitorización de la concentración de CO2 y radón. In: Las cuevas turísticas como activos económicos: conservación e innovación (J.J. Durán & P.A Robledo eds.). Asociación de Cuevas Turísticas Españolas, Madrid, 349–357.

McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23: 901–918. http://dx.doi.org/10.1016/j.quascirev.2003.06.021

Rozanski, K.; Araguás-Araguás, L. & Gonfiantini, R. (1993). Isotopic Patterns in Modern Global Precipitation. In: Climate Change in Continental Isotopic Records (Swart, P.K.; Lohmann, K.C.; Mckenzie, J. & Savin, S., eds.). American Geophysical Union, 1–36. http://dx.doi.org/10.1029/GM078p0001

Treble, P.C.; Bradley, C.; Wood, A.; Baker, A.; Jex, C.N.; Fairchild, I.J.; Gagan, M.K.; Cowley, J. & Azcurra, C. (2013). An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothempaleoclimate records. Quaternary Science Reviews, 64: 90–103. http://dx.doi.org/10.1016/j.quascirev.2012.12.015

Tremaine, D.M.; Froelich, P.N. & Wang, Y. (2011). Speleothem calcite farmed in situ: Modern calibration of d18O and d13C paleoclimate proxies in a continuously monitored natural cave system. Geochimica et Cosmochimica Acta, 75: 4929–4950. http://dx.doi.org/10.1016/j.gca.2011.06.005

Wackerbarth, A.; Scholz, D.; Fohlmeister, J. & Mangini, A. (2010). Modelling the £_18O value of cave drip water and speleothem calcite. Earth and Planetary Science Letters, 299: 387–397. http://dx.doi.org/10.1016/j.epsl.2010.09.019

Publicado

2014-12-30

Cómo citar

Osácar, M. C., Sancho, C., Muñoz, A., Bartolomé, M., Moreno, A., Delgado-Huertas, A., & Cacho, I. (2014). Trazabilidad de la señal isotópica del oxígeno desde la lluvia a los espeleotemas en las cuevas de Ortigosa de Cameros (La Rioja, España). Estudios Geológicos, 70(2), e021. https://doi.org/10.3989/egeol.41730.319

Número

Sección

Artículos