Estudios Geológicos, Vol 74, No 2 (2018)

Una biota transicional Ediacárica–Cámbrica en el anticlinal de Abenójar (Macizo Ibérico, España)


https://doi.org/10.3989/egeol.43012.470

J. Simón
Dpto. Biología y Geología. IES Peñalba, España
orcid http://orcid.org/0000-0002-0064-5672

Resumen


Se describe una secuencia conteniendo una biota transicional ediacárica–cámbrica, en el valle del arroyo de las Navezuelas, anticlinal de Abenójar (Grupo Ibor, Zona Centroibérica, España). La secuencia empieza con capas siliciclásticas de grano fino conteniendo Vendotaenia antiqua y moldes de Cloudina cf. hartmannae, uno de los primeros animales con esqueleto mineralizado. Continúa con carbonatos con Cloudina fosfatizadas, coincidiendo en muestra de mano con Vendotaenia antiqua y con protoconodontos semejantes a Protohertzina unguliformis, lo cual sugiere una edad ediacárica terminal o cámbrica basal. Las capas detríticas sobre este nivel contienen pistas fósiles simples de organismos sedimentívoros. Sobre un estrato superior de carbonatos con pequeños vendoténidos se ha hallado un conjunto de pistas fósiles de aspecto cámbrico, incluyendo Treptichnus pedum y madrigueras ornamentadas semejantes a la superficie ventral de Psammichnites. El hallazgo de protoconodontos es nuevo para la transición Ediacárico–Cámbrico en Europa, y esta es la tercera vez a escala mundial que este tipo de fósiles típicamente cámbricos son hallados junto con cloudínidos, típicamente ediacáricos, lo cual sugiere que la transición Ediacárico–Cámbrico fue biológicamente más gradual de lo que se pensaba anteriormente.

Palabras clave


Cloudina; explosión cámbrica; Grupo Ibor; Precámbrico; protoconodontos

Texto completo:


HTML PDF XML

Referencias


Amthor, J.E.; Grotzinger, J.P.; Schröder, S.; Bowring, S.A.; Ramezani, J.; Martin, M.W. & Matter, A. (2003). Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31: 431–434.

Barnes, J.W. & Lisle, R.J. (2004). Basic geological mapping. John Wiley & Sons, Ltd. Chichester, England. 184 pp.

Bengtson, S. (1982). The early history of the Conodonta. Fossils and Strata, 15: 5–19.

Bengtson, S.; Conway Morris, S.; Cooper, B.J.; Jell, P.A. & Runnegar, B.N. (1990). Early Cambrian fossils from south Australia. Memoirs of the Association of Australasian Palaeontologists, 9: 1–364.

Brasier, M.D.; Perejón, A. & San José, M.A. (1979). Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estudios Geológicos, 35: 379–383.

Buatois, L.A.; Narbonne, G.M.; Mángano, M.G.; Carmona, N.B. & Myrow, P. (2014). Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications, 5: 3544.

Cai, Y.; Schiffbauer, J.D.; Hua, H. & Xiao, S. (2011). Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lägerstatte of Southern Shaanxi Province, South China. Precambrian Research, 191: 46–57.

Cai, Y.; Hua, H. & Zhang, X. (2013). Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte. Precambrian Research, 224: 255–267.

Cai, Y.; Xiao, S.; Hua, H. & Yuan, X. (2015). New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Research, 261: 12–24.

Cai, Y.; Cortijo, I.; Schiffbauer, J.D. & Hua, H. (2017) Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China. Precambrian Research, 298: 146–156.

Chen, Z.; Zhou, C.; Xiao, S.; Wang, W.; Guan, C.; Hua, H. & Yuan, X. (2014). New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports, 4: 4180.

Cobbold, E.S. (1921). The Cambrian horizons of Comley (Shropshire) and their Brachiopoda, Pteropoda, Gastropoda and etc. Quarterly Journal of the Geological Society of London, 76: 325–386.

Coe, A.L. (2010). Geological field techniques. Wiley- Blackwell, 323 pp.

Cohen, P.A.; Bradley, A.; Knoll, A.H.; Grotzinger, J.P.; Jensen, S.; Abelson, J.; Hand, K.; Love, G.; Metz, J.; McLoughlin, N.; Meister, P.; Shepard, R.; Tice, M. & Wilson, J.P. (2009). Tubular compression fossils from the Ediacaran Nama Group, Namibia. Journal of Paleontology, 83: 110–122.

Cortijo, I. (2015). Estudio de los primeros metazoos mineralizados del registro geológico. Tesis Doctoral. Universidad de Extremadura, Spain. 159 pp.

Cortijo, I.; Mus, M.M.; Jensen, S. & Palacios, T. (2010). A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research, 176: 1–10.

Cortijo, I.; Cai, Y.; Hua, H.; Schiffbauer, J.D. & Xiao, S. (2015). Life history and autecology of an Ediacaran index fossil: development and dispersal of Cloudina. Gondwana Research, 28: 419–424.

Darroch, S.A.F.; Sperling, E.A.; Boag, T.H.; Racicot, R.A.; Mason, S.J.; Morgan, A.S.; Tweedt, S.; Myrow, P.; Johnston, D.T.; Erwin, D.H. & Laflamme, M. (2015). Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society, B 282: 1003.

Darwin, C. (1859). El origen de las especies. Austral (2009 edition), Pozuelo de Alarcón. 695 pp.

Eguíluz, L.; Martínez-Torres, L.M.; Sarrionadia, F.; Carracedo, M. & Gil-Ibarguchi, J.I. (2015). The Ibero-Armorican Belt: an evolving island-arc along northern Gondwana between ca 650 and 480 Ma. Géologie de la France, 1: 58–59.

Fedonkin, M.A.; Gehling, J.G.; Grey, K.; Narbonne, G.M. & Vickers-Rich, P. (2007). The rise of animals – Evolution and diversification of the kingdom Animalia. The Johns Hopkins University Press, Baltimore, 326 pp.

Fernández Remolar, D.C.; García-Hidalgo, J.F. & Moreno-Eiris, E. (2005). Interés del registro de los primeros organismos en el Arcaico y Proterozoico. Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica), 100: 177–209.

Gámez-Vintaned, J.A. (1996). The río Huso section. In: II Field conference of the Cambrian stage subdivisión working groups (Liñán, E.; Gámez-Vintaned, J.A. & Gozalo, R., Eds.). Field trip guide and abstracts. Universidad de Zaragoza, 28–31.

Gámez-Vintaned, J.A. & Liñán, E. (2007). The Precambrian-Cambrian boundary in Spain: ichnofossil palaeobiology and zonation. In: The rise and fall of the Vendian (Ediacaran) biota (Semikhatov, M.A., Ed.). Geos, 54–57.

García-Hidalgo, J.F. (1993). Las pistas fósiles de los anticlinales de Alcudia y Abenójar (Zona Centroibérica). Edad de las series. Geogaceta, 14: 57–59.

Gehling, J.; Jensen, S.; Droser, M.L.; Myrow, P.M. & Narbonne, G.M. (2001). Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geological Magazine, 138: 213–218.

Germs, G.J.B. (1972). New shelly fossils from Nama Group, south west Africa. American Journal of Science, 272: 732–761.

Gnilovskaya, M.B. (1971). The oldest aquatic plants of the Vendian of the Russian Platform (late Precambrian). Paleontological Journal, 5: 372–378.

Gould, S.J. (1989). La vida maravillosa: Burgess Shale y la naturaleza de la historia. Crítica, Barcelona. 357 pp.

Grant, S.W.F. (1990). Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290-A: 261:294.

Hahn, G. & Pflug, H.D. (1985). Die Cloudinidae n.fam. Kalk-Rohren aus dem Vendium und Unter-Kambrium. Senckenbergiana Lethaea, 56: 413–431.

Hinz, I. (1987). The Lower Cambrian microfauna of Comley and Rushton, Shropshire, England. Palaeontographica Abteilung A, 198: 41–100.

Hofmann, H.J. (1985). Precambrian carbonaceous megafossils. In: Paleoalgology: Contemporary research and applications (Toomey, D.F. & Nitecki, M.H., Eds.). Springer-Verlag, Berlin Heidelberg, 20–33.

Hua, H.; Chen, Z.; Yuan, X.; Zhang, L. & Xiao, S. (2005). Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277–280.

Jensen, S.; Droser, M. & Gehling, J.G. (2006). A critical look at the Ediacaran trace fossil record. In: Neoproterozoic geobiology and paleobiology (Xiao, S. & Kaufman, A.J., Eds). Springer, 115–157.

Jensen, S.; Gehling, J.G. & Droser, M.L. (1998). Ediacara-type fossils in Cambrian-aged sediments. Nature, 393: 567–569.

Jensen, S. & Palacios, T. (2016). The Ediacaran-Cambrian trace fossil record in the Central Iberian Zone, Iberian Peninsula. Comunicaçoes Geológicas, 103: 83–92.

Jeppson, L.; Anehus, R. & Fredholm, D. (1999). The optimal acetate buffered acetic acid technique for extracting phosphatic fossils. Journal of Paleontology, 73: 964–972.

Knoll, A. (2003). La vida en un joven planeta. Crítica, Barcelona. 366 pp.

Kouchinsky, A.; Bengtson, S.; Runnegar, B.; Skovsted, C.; Steiner, M. & Vendrasco, M. (2012). Chronology of early Cambrian biomineralization. Geological Magazine, 149: 221–251.

Leuckart, R. (1854). Bericht über die Leistungen in der Naturgeschichte der niederen Thiere während der Jahre 1848–1853. Archiv für Naturgeschichte, 20: 289–473.

Mángano, M.G. & Buatois, L.A. (2016). The Cambrian Explosion. In: The trace-fossil record of major evolutionary events (Mángano, M.G. & Buatois, L.A., Eds.). Topics in Geobiology, 39: 73–126.

Mángano, G.; Buatois, L.A. & Rindsberg, A.K. (2002). Carboniferous Psammichnites: systematic re-evaluation, taphonomy and autoecology. Ichnos, 9: 1–22.

Matthews, S.C. & Missarzhevsky, V.V. (1975). Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. Journal of the Geological Society of London, 131: 289–304.

McIlroy, D. & Szaniawski, H. (2000). A lower Cambrian protoconodont apparatus from the Placentian of southeastern Newfoundland. Lethaia, 33: 95–102.

McIlroy, D.; Green, O.R. & Brasier, M.D. (2001). Palaeobiology and evolution of the earliest agglutinated foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia, 34: 13–29.

McMenamin, M. (1987). The emergence of animals. Scientific American, 255: 94–102.

Meyer, M.; Schiffbauer, J.D.; Xiao, S.; Cai, Y. & Hua, H. (2012) Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes. Palaios, 27: 354–372.

Missarzhevsky, V.V. (1973). Conodont-shaped organisms from Precambrian-Cambrian boundary beds of the Siberian Platform and Kazakhstan. In: Problemy Paleontologii I Biostratygrafii nizhnego kembriya Sibiri I Dal’nego Vostoka (Zuravleva, I.T., Ed.). Trudy Instituta Geologii I Geofiziki SO AN SSSR, 49: 53–59.

Müller, K.J. & Hinz-Schallreuter, I. (1998). Internal structure of Cambrian conodonts. Journal of Paleontology, 72: 91–112.

Nozal Martín, F.; García Casquero, J.L. & Picart Boira, J. (1988). Discordancia Intraprecámbrica y series sedimentarias en el sector sur-oriental de los montes de Toledo. Boletín Geológico y Minero, 99: 473–489.

Ortega, F. & González-Lodeiro, F. (1986). La discordancia Intra-Alcudiense en el dominio meridional de la Zona Centro-Ibérica. Breviora Geologica Asturica, 3: 27–32.

Ortega Girones, E. & Sánchez Vizcaíno, J. (1987). Mapa Geológico de España. E 1:50.000. Abenójar (783). Instituto Geológico y Minero de España, Madrid, 42 pp.

Palacios, T. (1989). Microfósiles de pared orgánica del Proterozoico superior (región central de la Península Ibérica). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 3: 1–91.

Pemberton, S.G. & Frey, R.W. (1982). Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56(4): 843–881.

Pieren Pidal, A.P. (2000). Las sucesiones anteordovícicas de la región oriental de la provincia de Badajoz y área contigua de la de Ciudad Real. Universidad Complutense, Madrid, 620 pp.

Pieren Pidal, A.P. (2009). Rasgos geológicos de la comarca de Puertollano y del valle de Alcudia (Ciudad Real, España). Memorias de la Real Sociedad Española de Historia Natural, 2ª época, 6: 95–132.

Roiz, J.M. & Vegas, R. (1980). Formaciones ordovícicas y anteordovícicas del anticlinal del Tirteafuera (sur de la provincia de Ciudad Real). Stvdia Geologica Salmanticensia, 16: 27–36.

Seilacher, A. (2007). Trace fossil analysis. Springer, New York. 226 pp.

Simón, J. (2017). Trace fossils and dubiofossils from the Ediacaran and Cambrian of the Alcudia Anticline, Spain. Estudios Geológicos, 73: e068.

Szaniawski, H. (1982). Structure of protoconodont elements. Fossils and Strata, 15: 21–27.

Szaniawski, H. (2002). New evidence for the protoconodont origin of chaetognaths. Acta Palaeontologica Polonica, 47: 405–419.

Talavera, C.; Montero, P.; Poyatos, D.M. & Williams, I.S. (2012). Ediacaran to Lower Ordovician age of rocks ascribed to the Schist-Graywacke Complex (Iberian Massif, Spain): evidence from detrital zircon SHRIMP U-Pb geochronology. Gondwana Research, 22: 928–942.

Talavera, C.; Martínez Poyatos, D. & González Lodeiro, F. (2015). SHRIMP U-Pb geochronological constraints on the timing of the intra-Alcudian (Cadomian) angular unconformity in the Central Iberian Zone (Iberian Massif, Spain). International Journal of Earth Sciences, 104: 1739–1757.

Vannier, J.; Steiner, M.; Renvoisé, E.; Hu, S.-X. & Casanova, J.-P. (2007). Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proceedings of the Royal Society B, 274: 627–633.

Vidal, G.; Palacios, T.; Gámez-Vintaned, J.A.; Díez Balda, M.A. & Grant, S.W.F. (1994). Neoproterozoic-early Cambrian geology and palaeontology of Iberia. Geological Magazine, 131: 729–765.

Vinn, O. & Zaton, M. (2012). Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences. Carnets de Géologie, Article 2012/03: 39–47.

Webby, B.D. (1970). Late Precambrian trace fossils from New South Wales. Lethaia, 3: 79–109.

Wood, R.; Ivantsov, A.Y. & Zhuravlev, A.Y. (2017). First macrobiota biomineralization was environmentally triggered. Proceedings of the Royal Society B, 284: 20170059.

Yang, B.; Steiner, M.; Zhu, M.; Li, G.; Liu, J. & Liu, P. (2016). Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution. Precambrian Research, 285: 202–215.

Yi, Q.; Li, G.; Zhu, M.; Steiner, M. & Erdtmann, B.D. (2004). Early Cambrian protoconodonts and conodont-like fossils from China: taxonomic revisions and stratigraphic implications. Progress in Natural Science, 14: 173–180.

Zhu, M.; Zhuravlev, A.Y.; Wood, R.A.; Zhao, F. & Sukhov, S.S. (2017). A deep root for the Cambrian explosion: implications of new bio- and chemostratigraphy from the Siberian Platform. Geology, 45: 459–462.

Zhuravlev, A.Y.; Liñán, E.; Gámez Vintaned, J.A.; Debrenne, F. & Fedorov, A.B. (2012). New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica, 57: 205–224.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista estudios.geologicos@igeo.ucm-csic.es

Soporte técnico soporte.tecnico.revistas@csic.es