Estudios Geológicos, Vol 75, No 1 (2019)

La gran erupción de hace 4.2 ka cal en Cerro Blanco, Zona Volcánica Central, Andes: nuevos datos sobre los depósitos eruptivos holocenos en la Puna sur y regiones adyacentes


https://doi.org/10.3989/egeol.43438.515

J. L. Fernandez-Turiel
Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, España
orcid http://orcid.org/0000-0002-4383-799X

F. J. Perez–Torrado
Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), España
orcid http://orcid.org/0000-0002-4644-0875

A. Rodriguez-Gonzalez
Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), España
orcid http://orcid.org/0000-0003-0688-0531

J. Saavedra
IRNASA, CSIC, España
orcid http://orcid.org/0000-0003-0567-5499

J. C. Carracedo
Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), España
orcid http://orcid.org/0000-0002-4282-2796

M. Rejas
Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, España
orcid http://orcid.org/0000-0003-2356-0927

A. Lobo
Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, España
orcid http://orcid.org/0000-0002-6689-2908

M. Osterrieth
Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata–IIMYC–CONICET,, Argentina
orcid http://orcid.org/0000-0001-9892-9923

J. I. Carrizo
Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Argentina
orcid http://orcid.org/0000-0003-1615-6408

G. Esteban
Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Argentina
orcid http://orcid.org/0000-0001-6788-7513

J. Gallardo
IRNASA, CSIC, España
orcid http://orcid.org/0000-0002-4174-3930

N. Ratto
Instituto de las Culturas (IDECU), CONICET, Facultad de Filosofía y Letras, Universidad de Buenos Aires, Argentina
orcid http://orcid.org/0000-0002-6862-3330

Resumen


La erupción del Complejo Volcánico Cerro Blanco en el sur de la Puna, noroeste de Argentina (4410–4150 a BP) se investigó para obtener nueva información sobre estratigrafía, geomorfología, volcanología física, dataciones por radiocarbono, petrografía y geoquímica. La caracterización de los productos en relación a la evolución de la caldera de Cerro Blanco permitió estimar la distribución de los depósitos de ceniza de la fase paroxísmica Plineana de la erupción. Estos novedosos resultados evidencian una gran erupción explosiva riolítica que generó depósitos cineríticos en un área de aproximadamente 500.000 km2, acumulando > 100 km3 de tefra (volumen total). Este último valor supera el umbral inferior del Índice de Explosividad Volcánica (IEV) de 7. Los depósitos de caída de ceniza cubrieron la región, llegando a más de 400 km desde el Complejo Volcánico de Cerro Blanco, y los potentes depósitos de flujos piroclásticos rellenaron los valles vecinos alcanzando una distancia de 35 km. Esta erupción es la más grande documentada durante los últimos cinco milenios en la Zona Volcánica Central de los Andes y es probablemente una de las mayores erupciones explosivas holocenas del mundo. Además, se han identificado otras dos erupciones riolíticas en la región procedentes de otros dos centros eruptivos: una durante el Holoceno temprano y otra en el Holoceno tardío. La identificación y caracterización de estos grandes eventos volcánicos proporcionan nuevas guías para los registros geológicos y arqueológicos regionales del Holoceno, siendo marcadores cronostratigráficos de aplicación a una extensa área geográfica de América del Sur.

Palabras clave


Complejo Volcánico Cerro Blanco; ceniza volcánica; Holoceno; Zona Volcánica Central; Andes; Argentina

Texto completo:


HTML PDF XML

Referencias


Alfano, F.; Bonadonna, C.; Volentik, A.C.M.; Connor, C.B.; Watt, S.F.L.; Pyle, D.M. & Connor, L.J. (2011). Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile. Bulletin of Volcanology, 73: 613-630. https://doi.org/10.1007/s00445-010-0428-x

Arnosio, M.; Becchio, R.; Viramonte, J.; Groppelli, G.; Norini, G. & Corazzato, C. (2005). Geología del Complejo Volcánico Cerro Blanco (26o 45' S-67o 45'O), Puna Austral. XVI Congreso Geológico Argentino.

Arnosio, M.; Becchio, R.; Viramonte, J.G.; De Silva, S. & Viramonte, J.M. (2008). Geocronología e isotopía del Complejo Volcánico Cerro Blanco: un sistema de calderas cuaternario (73 - 12 ka) en los Andes centrales del sur. XVII Congreso Geológico Argentino.

Aulinas, M.; Garcia-Valles, M.; Fernandez-Turiel, J.L.; Gimeno, D.; Saavedra, J. & Gisbert, G. (2015). Insights into the formation of rock varnish in prevailing dusty regions. Earth Surface Processes and Landforms, 40: 447-458. https://doi.org/10.1002/esp.3644

Báez, W. (2014). Estratigrafía volcánica, estilos eruptivos y evolución del Complejo Volcanico Cerro Blanco, Puna Austral. Ph. D., Salta, Argentina, Universidad Nacional de Salta, 204 pp.

Báez, W.; Arnosio, M.; Chiodi, A.; Ortíz-Yañes, A.; Viramonte, J.G.; Bustos, E.; Giordano, G. & López, J.F. (2015). Estratigrafía y evolución del Complejo Volcánico Cerro Blanco, Puna Austral, Argentina. Revista Mexicana De Ciencias Geologicas, 32: 29-49.

Báez, W.A.; Chiodi, A.; Bustos, E.; Arnosio, M.; Viramonte, J.G.; Giordano, G. & Alfaro Ortega, B. (2016). Mecanismos de emplazamiento y destrucción de los domos lávicos asociados a la caldera del Cerro Blanco, Puna Austral. Revista de la Asociación Geológica Argentina; Vol 74, No 2 (2017).

Bagheri, G.; Rossi, E.; Biass, S. & Bonadonna, C. (2016). Timing and nature of volcanic particle clusters based on field and numerical investigations. Journal of Volcanology and Geothermal Research, 327: 520-530. https://doi.org/10.1016/j.jvolgeores.2016.09.009

Baker, P.E.; Gonzalez-Ferran, O. & Rex, D.C. (1987). Geology and geochemistry of the Ojos del Salado volcanic Region, Chile. Journal of the Geological Society, 144: 85-96. https://doi.org/10.1144/gsjgs.144.1.0085

Bianchi, M. et al. (2013). Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. Tectonophysics, 586: 65-83. https://doi.org/10.1016/j.tecto.2012.11.016

Bonadonna, C.; Connor, C.B.; Houghton, B.F.; Connor, L.; Byrne, M.; Laing, A. & Hincks, T.K. (2005). Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. Journal of Geophysical Research: Solid Earth, 110. https://doi.org/10.1029/2003JB002896

Bonadonna, C. & Houghton, B.F. (2005). Total grain-size distribution and volume of tephra-fall deposits. Bulletin of Volcanology, 67: 441-456. https://doi.org/10.1007/s00445-004-0386-2

Branney, M.J. & Kokelaar, P. (2002). Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society, London, 143 pp.

Brazier, S.; Sparks, R.S.J.; Carey, S.N.; Sigurdsson, H. & Westgate, J.A. (1983). Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature, 301: 115-119. https://doi.org/10.1038/301115a0

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51: 337-360. https://doi.org/10.1017/S0033822200033865

Brown, R.J.; Bonadonna, C. & Durant, A.J. (2012). A review of volcanic ash aggregation. Physics and Chemistry of the Earth, Parts A/B/C, 45-46: 65-78. https://doi.org/10.1016/j.pce.2011.11.001

Brown, S. et al. (2014). Characterisation of the Quaternary eruption record: analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database. Journal of Applied Volcanology, 3: 5. https://doi.org/10.1186/2191-5040-3-5

Brunori, C.A.; Bignami, C.; Stramondo, S. & Bustos, E. (2013). 20 years of active deformation on volcano caldera: Joint analysis of InSAR and AInSAR techniques. International Journal of Applied Earth Observation and Geoinformation, 23: 279-287. https://doi.org/10.1016/j.jag.2012.10.003

Carey, S.N. & Sigurdsson, H. (1982). Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. Journal of Geophysical Research: Solid Earth, 87: 7061-7072. https://doi.org/10.1029/JB087iB08p07061

Cas, R.; Porritt, L.; Pittari, A. & Hayman, P. (2008). A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: Descriptive to genetic. Journal of Volcanology and Geothermal Research, 174: 226-240. https://doi.org/10.1016/j.jvolgeores.2007.12.018

Cas, R. & Wright, J. (1988). Volcanic Successions Modern and Ancient. A geological approach to processes, products and successions. Springer Netherlands, 528 pp. https://doi.org/10.1007/978-94-009-3167-1

Cas, R.A.F.; Wright, H.M.N.; Folkes, C.B.; Lesti, C.; Porreca, M.; Giordano, G. & Viramonte, J.G. (2011). The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bulletin of Volcanology, 73: 1583-1609. https://doi.org/10.1007/s00445-011-0564-y

Charbonnier, S.J. & Gertisser, R. (2008). Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research, 177: 971-982. https://doi.org/10.1016/j.jvolgeores.2008.07.008

Cioni, R.; Marianelli, P.; Santacroce, R. & Sbrana, A. (2000). Plinian and subplinian eruptions. In: Encyclopaedia of Volcanoes (Sigurdsson, H.; Houghton, B. F.; McNutt, S. R.; Rymer, H. & Stix, J., eds.). Academic Press, San Diego, 477-494.

Connor, L.J. & Connor, C.B. (2006). Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. (Mader, H. M.; Coles, S. G.; Connor, C. B. & Connor, L. J., eds.). In: Statistics in Volcanology. Geological Society of London.

Crosweller, H.S. et al. (2012). Global database on large magnitude explosive volcanic eruptions (LaMEVE). Journal of Applied Volcanology, 1: 4. https://doi.org/10.1186/2191-5040-1-4

Daggitt, M.L.; Mather, T.A.; Pyle, D.M. & Page, S. (2014). AshCalc-a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. Journal of Applied Volcanology, 3: 7. https://doi.org/10.1186/2191-5040-3-7

Druitt, T.H. & Sparks, R.S.J. (1984). On the formation of calderas during ignimbrite eruptions. Nature, 310: 679-681. https://doi.org/10.1038/310679a0

Durant, A.J.; Rose, W.I.; Sarna-Wojcicki, A.M.; Carey, S. & Volentik, A.C.M. (2009). Hydrometeor-enhanced tephra sedimentation: Constraints from the 18 May 1980 eruption of Mount St. Helens. Journal of Geophysical Research: Solid Earth, 114: B03204. https://doi.org/10.1029/2008JB005756

Durant, A.J.; Villarosa, G.; Rose, W.I.; Delmelle, P.; Prata, A.J. & Viramonte, J.G. (2012). Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén volcano, Chile. Physics and Chemistry of the Earth, 45-46: 50-64. https://doi.org/10.1016/j.pce.2011.09.004

Engwell, S.L.; Sparks, R.S.J. & Carey, S. (2014). Physical characteristics of tephra layers in the deep sea realm: The Campanian Ignimbrite eruption. Geological Society, London, Special Publications, 398. https://doi.org/10.1144/SP398.7

Erdmann, S.; Martel, C.; Pichavant, M. & Kushnir, A. (2014). Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167: 1016. https://doi.org/10.1007/s00410-014-1016-4

Fernandez-Turiel, J.L. et al. (2015). The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes. EGU General Assembly, EGU2015-3392.

Fernandez-Turiel, J.L.; Perez-Torrado, F.J.; Saavedra, J.; Osterrieth, M. & Carrizo, J.I. (2014). Cerro Blanco originó la mayor erupción de los últimos 5000 años en el noroeste de Argentina. Actas, XIX Congreso Geológico Argentino, 1093-1094.

Fernandez-Turiel, J.L.; Perez-Torrado, F. J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Carracedo, J. C., Rejas, M.; Lobo, A.; Osterrieth, M.; Carrizo, J. I.; Esteban, G.; Gallardo, J. & Ratto, N. (2019). Dataset of SEM images, modelled isopach map and topographic profiles, radiocarbon ages and data of parameters of Tephra2 and AshCalc codes of Holocene volcanic ashes of NW Argentina. In: DIGITAL.CSIC, http://hdl.handle.net/10261/179003.

Fernandez-Turiel, J.L.; Rejas, M.; Perez-Torrado, F.J.; Saavedra, J. & Rodriguez-Gonzalez, A. (2018a). Dataset of geochemical data of Holocene volcanic ashes of NW Argentina. DIGITAL.CSIC, http://hdl.handle.net/10261/167757.

Fernandez-Turiel, J.L.; Rejas, M.; Perez-Torrado, F.J.; Saavedra, J. & Rodriguez-Gonzalez, A. (2018b). Dataset of particle size distribution data of Holocene volcanic ashes of NW Argentina. DIGITAL.CSIC, http://hdl.handle.net/10261/167764.

Fernandez-Turiel, J.L.; Saavedra, J.; Perez-Torrado, F.J.; Rodriguez-Gonzalez, A.; Carracedo, J.C.; Osterrieth, M.; Carrizo, J.I. & Esteban, G. (2013). The largest Holocene eruption of the Central Andes found. AGU Fall Meeting.

Fierstein, J. & Hildreth, W. (1992). The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol, 54: 646-684. https://doi.org/10.1007/BF00430778

Fierstein, J. & Nathenson, M. (1992). Another look at the calculation of fallout tephra volumes. Bull Volcanol, 54: 156-167. https://doi.org/10.1007/BF00278005

Fontijn, K.; Lachowycz, S.M.; Rawson, H.; Pyle, D.M.; Mather, T.A.; Naranjo, J.A. & Moreno-Roa, H. (2014). Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quaternary Science Reviews, 89: 70-84. https://doi.org/10.1016/j.quascirev.2014.02.007

Frenguelli, J. (1936). Investigaciones geológicas en la zona salteña del valle de Santa María. Obra del Cincuentenario del Museo de La Plata. In: Obra del Cincuentenario del Museo de La Plata. La Plata, 215-572.

Freundt, A.; Wilson, C.J.N. & Carey, S.N. (2000). Ignimbrites and block-and-ash flow deposits. (Sigurdsson, H.; Houghton, B. F.; McNutt, S. R.; Rymer, H. & Stix, J., eds.). In: Encyclopaedia of Volcanoes. Academic Press, San Diego, 581-599.

Gardeweg, M.; Clavero, J.; Mpodozis, C.; Pérez de A., C. & Villeneuve, M. (2000). El Macizo Tres Cruces: un complejo volcánico longevo y potencialmente activo en la Alta Cordillera de Copiapó, Chile. Actas IX Congreso Geológico Chileno, Simposio Geología y Recursos Minerales de los Andes Centrales, avances del Proyecto Multinacional Andino, MAP, 291-295.

Garreaud, R.; Vuille, M. & Clement, A.C. (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194: 5-22. https://doi.org/10.1016/S0031-0182(03)00269-4

Garreaud, R.D. (2009). The Andes climate and weather. Adv. Geosci., 22: 3-11. https://doi.org/10.5194/adgeo-22-3-2009

Ghiorso, M.S. & Evans, B.W. (2008). Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-Barometer. American Journal of Science, 308: 957-1039. https://doi.org/10.2475/09.2008.01

Gilbert, D.; Freundt, A.; Kutterolf, S. & Burkert, C. (2014). Post-glacial time series of explosive eruptions and associated changes in the magma plumbing system of Lonquimay volcano, south central Chile. International Journal of Earth Sciences, 103: 2043-2062. https://doi.org/10.1007/s00531-012-0796-x

Global Volcanism Program, 2013a. Volcanoes of the World, v. 4.7.4. Venzke, E (ed.). Smithsonian Institution. Downloaded 01 Dec 2018 (https://volcano.si.edu/volcano.cfm?vn=355210).

Global Volcanism Program, 2013b. Cerro Blanco (355210) in Volcanoes of the World, v. 4.7.4. Venzke, E (ed.). Smithsonian Institution. Downloaded 01 Dec 2018 (https://volcano.si.edu/volcano.cfm?vn=355210).

Global Volcanism Program, 2013c. Huaynaputina (354030) in Volcanoes of the World, v. 4.7.4. Venzke, E (ed.). Smithsonian Institution. Downloaded 01 Dec 2018 (https://volcano.si.edu/volcano.cfm?vn=354030#).

Henderson, S.T. & Pritchard, M.E. (2013). Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series. Geochemistry, Geophysics, Geosystems, 14: 1358-1374. https://doi.org/10.1002/ggge.20074

Hermanns, R.L. & Schellenberger, A. (2008). Quaternary tephrochronology helps define conditioning factors and triggering mechanisms of rock avalanches in NW Argentina. Quaternary International, 178: 261-275. https://doi.org/10.1016/j.quaint.2007.05.002

Hermanns, R.L.; Trauth, M.H.; Niedermann, S.; McWilliams, M. & Strecker, M.R. (2000). Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina. Journal of Geology, 108: 35-52. https://doi.org/10.1086/314383 PMid:10618189

Hildreth, W. & Drake, R.E. (1992). Volcan Quizapu, Chilean Andes. Bulletin of Volcanology, 54: 93-125. https://doi.org/10.1007/BF00278002

Hildreth, W. & Fierstein, J. (2012a). The Novarupta-Katmai eruption of 1912-largest eruption of the twentieth century; centennial perspectives. U.S. Geological Survey Professional Paper, 1791: 1-259. https://doi.org/10.3133/pp1791

Hildreth, W. & Fierstein, J. (2012b). Eruptive history of Mount Katmai, Alaska. Geosphere, 8: 1527-1567. https://doi.org/10.1130/GES00817.1

Hogg, A.G. et al. (2013). SHCal13 Southern Hemisphere Calibration, 0-50,000 Years cal BP. Radiocarbon, 55: 1889-1903. https://doi.org/10.2458/azu_js_rc.55.16783

Houghton, B. & Carey, R. J. (2015). Pyroclastic fall deposits. In: Encyclopedia of volcanoes. Academic Press, London, 599-616. https://doi.org/10.1016/B978-0-12-385938-9.00034-1

Jenkins, S. F.; Wilson, T. M.; Miller, V.; Stewart, C.; Marzocchi, W. & Boulton, M. (2015). Volcanic ash fall hazard and risk: Technical Background Paper for the UNISDR 2015 Global Assessment Report on Disaster Risk Reduction. Global Volcano Model and IAVCEI, 43.

Kay, S.M.; Coira, B. & Mpodozis, C. (2006). Late Neogene volcanism in the Cerro Blanco region of the Puna Austral, Argentina (26.5oS 67.5oW). XI Congreso Geológico Chileno, 499-502.

Kay, S.M.; Coira, B. & Mpodozis, C. (2008). Field trip guide: Neogene evolution of the central Andean Puna plateau and southern Central Volcanic Zone. Field Guides, 13: 117-181. https://doi.org/10.1130/2008.0013(05)

Kay, S.M.; Coira, B.L.; Caffe, P.J. & Chen, C.H. (2010). Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research, 198: 81-111. https://doi.org/10.1016/j.jvolgeores.2010.08.013

Lane, C.S.; Lowe, D.J.; Blockley, S.P.E.; Suzuki, T. & Smith, V.C. (2017). Advancing tephrochronology as a global dating tool: Applications in volcanology, archaeology, and palaeoclimatic research. Quaternary Geochronology, 40: 1-7. https://doi.org/10.1016/j.quageo.2017.04.003

Lavigne, F. et al. (2013). Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proceedings of the National Academy of Sciences, 110: 16742-16747. https://doi.org/10.1073/pnas.1307520110 PMid:24082132 PMCid:PMC3801080

Legros, F. (2000). Minimum volume of a tephra fallout deposit estimated from a single isopach. Journal of Volcanology and Geothermal Research, 96: 25-32. https://doi.org/10.1016/S0377-0273(99)00135-3

Legros, F.; Kelfoun, K. & Martí, J. (2000). The influence of conduit geometry on the dynamics of caldera-forming eruptions. Earth and Planetary Science Letters, 179: 53-61.. https://doi.org/10.1016/S0012-821X(00)00109-6

Locock, A.J. (2014). An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62: 1-11. https://doi.org/10.1016/j.cageo.2013.09.011

Lowe, D.J. (2011). Tephrochronology and its application: A review. Quaternary Geochronology, 6: 107-153. https://doi.org/10.1016/j.quageo.2010.08.003

Malamud, B.D.; Jordan, T.E.; Alonso, R.A.; Gallardo, E.F.; González, R.E. & Kelley, S.A. (1996). Pleistocene Lake Lerma, Salta Province, NW Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, 103-114.

Marcaida, M.; Mangan, M.T.; Vazquez, J.A.; Bursik, M. & Lidzbarski, M.I. (2014). Geochemical fingerprinting of Wilson Creek formation tephra layers (Mono Basin, California) using titanomagnetite compositions. Journal of Volcanology and Geothermal Research, 273: 1-14. https://doi.org/10.1016/j.jvolgeores.2013.12.008

Mastin, L.G.; Van Eaton, A.R. & Durant, A.J. (2016). Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts. Atmos. Chem. Phys., 16: 9399-9420. https://doi.org/10.5194/acp-16-9399-2016

McGimsey, R.G.; Neal, C.A. & Riley, C.M. (2001). Areal distribution, thickness, mass, volume, and grain size of tephra-fall deposits from the 1992 eruptions of Crater Peak Vent, Mt. Spurr Volcano, Alaska. U. S. Geological Survey, 38 pp. https://doi.org/10.3133/ofr01370

Montero-López, M.C.; Hongn, F.; Brod, J.A.; Seggiaro, R.; Marrett, R. & Sudo, M. (2010a). Magmatismo ácido del Mioceno Superior-Cuaternario en el área de Cerro Blanco- La Hoyada, Puna Austral. Revista de la Asociación Geológica Argentina, 67: 329-348.

Montero-López, M.C.; Hongn, F.; Seggiaro, R.; Brod, J.A. & Marrett, R. (2010b). Estratigrafía y geoquímica del volcanismo de composición intermedia (Mioceno Superior-Plioceno) en el extremo oriental de la cordillera de San Buenaventura (Puna Austral). Revista de la Asociación Geológica Argentina, 67: 112-129.

Montero-López, M.C.; Hongn, R.; Seggiaro, R.; Marrett, R. & Ratto, N. (2009). Relación entre el volcanismo y los registros arqueológicos en el bolsón de Fiambalá (Departamento Tinogasta, Catamarca). In: Entrelazando Ciencias: Sociedad y ambiente antes de la conquista española (Ratto, N., ed.). EUDEBA, Buenos Aires, 131-158.

Neukom, R.; Rohrer, M.; Calanca, P.; Salzmann, N.; Huggel, C.; Acuña, D.; Christie, D. & Morales, M.S. (2015). Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000-2100. Environmental Research Letters, 10: 084017. https://doi.org/10.1088/1748-9326/10/8/084017

Pardo, N.; Cronin, S.J.; Palmer, A.S. & Németh, K. (2012). Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian-plinian eruptions at andesitic volcanoes. Bulletin of Volcanology, 74: 617-640. https://doi.org/10.1007/s00445-011-0555-z

Pignatelli, I.; Faure, F. & Mosser-Ruck, R. (2016). Self-mixing magma in the Ruiz Peak rhyodacite (New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica. Lithos, 266-267: 332-347. https://doi.org/10.1016/j.lithos.2016.10.024

Pintar, E. (2014). Continuidades e hiatos ocupacionales durante el holoceno medio en el borde oriental de la Puna Salada, Antofagasta de la Sierra, Argentina. Chungará (Arica), 46: 51-72. https://doi.org/10.4067/S0717-73562014000100004

Ponomareva, V.; Portnyagin, M. & Davies, S.M. (2015). Tephra without Borders: Far-Reaching Clues into Past Explosive Eruptions. Frontiers in Earth Science, 3: 83. https://doi.org/10.3389/feart.2015.00083

Pritchard, M.E. & Simons, M. (2004). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry Geophysics Geosystems, 5: 1-4. https://doi.org/10.1029/2003GC000610

Putirka, K.D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69: 61-120. https://doi.org/10.2138/rmg.2008.69.3

Pyle, D.M. (1989). The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol, 51: 1-15. https://doi.org/10.1007/BF01086757

Ramón Folch, J.A. de (1954). Descubrimiento de Chile y compañeros de Almagro. Universidad Católica de Chile. Facultad de Filosofía y Letras. Instituto de Investigaciones Históricas, Santiago de Chile, 190 pp.

Ratto, N. (2013). A modo de introducción: la articulación de estudios arqueológicos, paleoambientales e históricos en el oeste tinogasteño (Catamarca). In: Delineando prácticas de la gente del pasado: Los procesos socio-históricos del oeste catamarqueño (Ratto, N., ed.). Sociedad Argentina de Antropología, Buenos Aires, 17-44.

Ridolfi, F. & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163: 877-895. https://doi.org/10.1007/s00410-011-0704-6

Ridolfi, F.; Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160: 45-66. https://doi.org/10.1007/s00410-009-0465-7

Roberge, J.; De Silva, S.; Viramonte, J.G.; Arnosio, M. & Beccio, R. (2012). Magma dynamics of the Cerro Blanco Volcanic Complex, Argentina, based on volatiles, major and trace elements in melt inclusions. Cordilleran Section, GSA 108th Annual Meeting, Paper No. 18-11.

Ruggieri, F.; Fernandez-Turiel, J.L.; Saavedra, J.; Gimeno, D.; Polanco, E.; Amigo, A.; Galindo, G. & Caselli, A. (2012). Contribution of volcanic ashes to the regional geochemical balance: The 2008 eruption of Chaitén volcano, Southern Chile. Science of the Total Environment, 425: 75-88. https://doi.org/10.1016/j.scitotenv.2012.03.011 PMid:22464957

Ruggieri, F.; Saavedra, J.; Fernandez-Turiel, J.L.; Gimeno, D. & Garcia-Valles, M. (2010). Environmental geochemistry of ancient volcanic ashes. Journal of Hazardous Materials, 183: 353-365. https://doi.org/10.1016/j.jhazmat.2010.07.032 PMid:20675046

Sampietro Vattuone, M.M.; Peña-Monné, J.L.; Maldonado, M.G.; Sancho Marcén, C.; Báez, W.; Sola, A. & Blasi, A. (2018). Cambios ambientales durante el Holoceno superior registrados en secuencias morfosedimentarias fluvio-eólicas del Valle de Santa María (Noroeste Argentino). Boletín Geológico y Minero, 129: 647-669. https://doi.org/10.21701/bolgeomin.129.4.004

Sampietro-Vattuone, M.M. & Peña-Monné, J.L. (2016). Geomorphological dynamic changes during the Holocene through ephemeral stream analyses from Northwest Argentina. Catena, 147: 663-677. https://doi.org/10.1016/j.catena.2016.08.029

Sarna-Wojcicki, A.M.; Shipley, S.; Waitt, R.B.; Dzurisin, D. & Wood, S.H. (1982). Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980. In: The 1980 eruptions of Mount St. Helens, Washington (Lipman, W. P. & Mullineaux, D. R., eds.). USGS, Washington, Prof. Paper, 1250: 577-600.

Scasso, R.A.; Corbella, H. & Tiberi, P. (1994). Sedimentological analysis of the tephra from the 12-15 august 1991 eruption of Hudson volcano. Bulletin of Volcanology, 56: 121-132. https://doi.org/10.1007/s004450050021

Schindlbeck, J.C.; Freundt, A. & Kutterolf, S. (2014). Major changes in the post-glacial evolution of magmatic compositions and pre-eruptive conditions of Llaima Volcano, Andean Southern Volcanic Zone, Chile. Bulletin of Volcanology, 76: 830. https://doi.org/10.1007/s00445-014-0830-x

Seggiaro, R.; Hongn, F.; Folguera, A. & Clavero, J. (2000). Hoja Geológica 2769-II. Paso de San Francisco. Programa Nacional de Cartas Geológicas 1:250.000. 52 pp.

Sorem, R.K. (1982). Volcanic ash clusters: Tephra rafts and scavengers. Journal of Volcanology and Geothermal Research, 13: 63-71. https://doi.org/10.1016/0377-0273(82)90019-1

Stern, C.R. (2004). Active Andean volcanism: its geologic and tectonic setting. Revista Geologica De Chile, 31: 161-206. https://doi.org/10.4067/S0716-02082004000200001

Stern, C.R. (2008). Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bulletin of Volcanology, 70: 435-454. https://doi.org/10.1007/s00445-007-0148-z

Tilling, R.I. (2009). Volcanism and associated hazards: the Andean perspective. Adv. Geosci., 22: 125-137. https://doi.org/10.5194/adgeo-22-125-2009

Tomiya, A. & Takahashi, E. (2005). Evolution of the Magma Chamber beneath Usu Volcano since 1663: a Natural Laboratory for Observing Changing Phenocryst Compositions and Textures. Journal of Petrology, 46: 2395-2426. https://doi.org/10.1093/petrology/egi057

Trauth, M.H.; Bookhagen, B.; Marwan, N. & Strecker, M.R. (2003). Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194: 109-121. https://doi.org/10.1016/S0031-0182(03)00273-6

Vidal, C.M. et al. (2015). Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia). Bulletin of Volcanology, 77: 73. https://doi.org/10.1007/s00445-015-0960-9

Viramonte, J.G.; Castro Godoy, S.; Arnosio, J.M.; Becchio, R. & Poodts, M. (2005). El campo geotermal de la caldera de Cerro Blanco: utilización de imágenes ASTER. XVI Congreso Geológico Argentino, 505-512.

Watanabe, K.; Ono, K.; Sakaguchi, K.; Takada, A. & Hoshizumi, H. (1999). Co-ignimbrite ash-fall deposits of the 1991 eruptions of Fugen-dake, Unzen Volcano, Japan. Journal of Volcanology and Geothermal Research, 89: 95-112. https://doi.org/10.1016/S0377-0273(98)00126-7

Watt, S.F.L.; Gilbert, J.S.; Folch, A.; Phillips, J.C. & Cai, X.M. (2015). An example of enhanced tephra deposition driven by topographically induced atmospheric turbulence. Bulletin of Volcanology, 77: 35. https://doi.org/10.1007/s00445-015-0927-x

Watt, S.F.L.; Pyle, D.M.; Mather, T.A.; Martin, R.S. & Matthews, N.E. (2009). Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaiten, Chile. Journal of Geophysical Research-Solid Earth, 114. https://doi.org/10.1029/2008JB006219

Wayne, W.J. (1999). The Alemania rockfall dam: A record of a mid-holocene earthquake and catastrophic flood in northwestern Argentina. Geomorphology, 27: 295-306. https://doi.org/10.1016/S0169-555X(98)00080-4

Wiesner, M.G.; Wetzel, A.; Catane, S.G.; Listanco, E.L. & Mirabueno, H.T. (2004). Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea. Bulletin of Volcanology, 66: 226-242. https://doi.org/10.1007/s00445-003-0306-x

Wilson, G.; Wilson, T.M.; Deligne, N.I. & Cole, J.W. (2014). Volcanic hazard impacts to critical infrastructure: A review. Journal of Volcanology and Geothermal Research, 286: 148-182. https://doi.org/10.1016/j.jvolgeores.2014.08.030

Yazdanparast, M.; Voosoghi, B. & Mossaiby, F. (2017). Determination of Cerro Blanco volcano deformation field using method of fundamental solutions. Geomatics, Natural Hazards and Risk, 8: 1258-1275. https://doi.org/10.1080/19475705.2017.1310765




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista estudios.geologicos@igeo.ucm-csic.es

Soporte técnico soporte.tecnico.revistas@csic.es