Estudios Geológicos 78 (1)
enero-junio 2022, e144
ISSN-L: 0367-0449
https://doi.org/10.3989/egeol.44533.609

Diagenesis, provenance and tectonic setting of siliciclastic rocks. A case study from Upper Devonian of the Iberian Chain (Tabuenca, Spain)

Diagénesis, análisis de procedencia y ambiente tectónico de rocas siliciclásticas. Un caso de estudio en el Devónico Superior de la Cordillera Ibérica (Tabuenca, España)

Francisco Javier Torrijo

Department of Geological and Geotechnical Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
Research Centre for Architecture, Heritage and Management for Sustainable Development (PEGASO), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.

https://orcid.org/0000-0001-6048-6792

Rodolfo Gozalo

Department of Botany and Geology, Faculty of Biological Sciences, Universitat de Valencia, Calle Dr. Moliner 50, 46100-Burjassot, Spain.

https://orcid.org/0000-0001-7985-9843

Julio Garzón-Roca

Department of Geodynamics (GEODESPAL), Faculty of Geology, Complutense University of Madrid, 28040, Madrid, Spain.

https://orcid.org/0000-0003-4512-7067

Julio Company

Department of Geological and Geotechnical Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.

https://orcid.org/0000-0001-8223-4182

ABSTRACT

This paper describes the petrography and infers the provenance of siliciclastic rocks from the Upper Devonian of the Iberian Chains (Tabuenca, NE Spain), and outlines the tectonic setting associated with the Ebro Massif. These Devonian deposits are constituted by four different siliciclastic units: the Rodanas, Bolloncillos, Hoya and Huechaseca Formations. The provenance and diagenesis of over 400 sedimentary rocks samples are studied with a combination of petrographic polarizing microscope, scanning electron microscopy, atomic absorption spectroscopy, X-ray fluorescence and X-ray diffraction. In this sense, AAS and XRF analysis were used to determine the content of Ca, Mg, Fe, Mn, Na, K and Sr, among others; and XRD analysis was used to determine the clay´s crystalline phases. These rocks experienced intense compaction and quartz cementation processes after deposition. No primary porosity remains nowadays and secondary porosity is rare. The formation of these siliciclastic rocks occurred mainly under subtropical climatic conditions, given the paleogeographical position of the current Iberian landmass during the Devonian.

Keywords: 
Devonian; Diagenesis; Paleoclimate; Siliciclastic rocks; Provenance; Iberian Chains
RESUMEN

Este trabajo describe la petrografía e infiere la procedencia de los materiales que constituyen las rocas siliciclásticas del Devónico Superior de la Cordillera Ibérica (Tabuenca, España), y esboza el ambiente tectónico asociado con el Macizo del Ebro. El Devónico superior de Tabuenca está dividido en cuatro formaciones: Rodanas, Bolloncillos, Hoya y Huechaseca. Se ha llevado a cabo el análisis de la procedencia y el estudio de los procesos diagenéticos de mas de 400 rocas sedimentarias combinando diversas técnicas: microscopía petrográfica clásica, microscopía electrónica, espectrometría de absorción atómica (AAS) , fluorescencia mediante rayos X (XRF) y difracción de rayos X (XRD). En este sentido, los análisis mediante AAS y XRF se usaron para determinar el contenido de Ca, Mg, Fe, Mn, Na, K y Sr, entre otros elementos mayores; y el análisis mediante XRD fue utilizado, fundamentalmente, para caracterizar las distintas fases cristalinas de los minerales arcillosos. Estas rocas han experimentado unos intensos procesos de compactación y cementación silícea después de su depósito. No se ha detectado la existencia de porosidad primaria y la secundaria es escasa. La formación de estas rocas siliciclásticas ha tenido lugar de manera generalizada bajo condiciones climáticas subtropicales, en consonancia con su posición paleogeográfica durante el Devónco.

Palabras clave: 
Devónico; Diagénesis; Paleoclima; Rocas Siliciclásticas; Análisis de procedencia; Cordillera Ibérica

Recibido el 2 de diciembre de 2021; Aceptado el 25 de marzo de 2022; Publicado online el 02 de junio de 2022

Citation/Cómo citar este artículo: Torrijo, F.J. et al. (2022). Diagenesis, provenance and tectonic settings of siliciclastic rocks. A case study from Upper Devonian of the Iberian Chain (Tabuenca, Spain). Estudios Geológicos 78(1): e144. https://doi.org/10.3989/egeol.44533.609.

CONTENT

Introduction

 

The rocks of the Rodanas, Bolloncillos, Hoya and Huechaseca Formations were deposited during the upper Devonian in the Iberian Peninsula, in a foreland basin setting adjacent to the Ebro Massif (Carls, 1983Carls, P. (1983). La zona Asturoccidental-Leonesa en Aragón y el Macizo del Ebro como continuación del Macizo Cantábrico. In: Libro Jubilar J. M. Ríos, I.G.M.E., 3, 11-32.; Oliveira et al., 1986Oliveira, J.T.; García-Alcalde, J.L.; Liñan, E. & Truyols-Massoni, J. (1986). The Famennian of the Iberian Peninsula. Annales de la Société Géologique de Belgique, 11: 159-174.).

Provenance studies of siliciclastic rocks have been studied in sedimentary basins, such as foreland basins (i.e., DeCelles & Hertel, 1989De Celles, P.G. & Hertel, F. (1989). Petrology of fluvial sands from the Amazonian foreland basin, Peru and Bolivia. Geological Society of America Bulletin, 101: 1552-1562. https://doi.org/10.1130/0016-7606(1989)101<1552:POFSFT>2.3.CO;2 ; Critelli & Le Pera, 1994Critelli, S. & Le Pera, E. (1994). Detrital modes and provenance of Miocene sandstones and modern sands of the Southern Apennines thrust-top basins, Italy. Journal of Sedimentary Research, 64: 824-835. https://doi.org/10.1306/D4267ED8-2B26-11D7-8648000102C1865D ; White et al., 2002White, N.M.; Pringle, M.; Garzanti, E.; Bickle, M.; Najman, Y.; Chapman, H. & Friend, P. (2002). Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth and Planetary Science Letters, 195: 29-44. https://doi.org/10.1016/S0012-821X(01)00565-9 ; Critelli et al., 2003Critelli, S.; Arribas, J.; Le Pera, E.; Tortosa, A.; Marsaglia, K.M. & Latter, K.K. (2003). The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, Southern Spain. Journal of Sedimentary Research, 73: 72-81. https://doi.org/10.1306/071002730072 ; Garzanti et al., 2003Garzanti, E.; Andò, S.; Vezzoli, G. & Dell’Era, D. (2003). From rifted margins to foreland basins: investigating provenance and sediment dispersal across desert Arabia (Oman, U.A.E.). Journal of Sedimentary Research, 73: 572-588. https://doi.org/10.1306/101702730572 ) or rift basins (i.e., Garzanti et al., 2001Garzanti, E.; Vezzoli, G.; Andò, S. & Castiglioni, G. (2001). Petrology of riftedmargin sand (Red Sea and Gulf of Aden, Yemen). Journal of Geology, 109: 277-297. https://doi.org/10.1086/319973 , 2003Garzanti, E.; Andò, S.; Vezzoli, G. & Dell’Era, D. (2003). From rifted margins to foreland basins: investigating provenance and sediment dispersal across desert Arabia (Oman, U.A.E.). Journal of Sedimentary Research, 73: 572-588. https://doi.org/10.1306/101702730572 ; Arribas et al., 2003Arribas, J.; Alonso, A.; Mas, R.; Tortosa, A.; Rodas, M.; Barrenechea, J.F.; Alonso-Azcarate, J. & Artigas, R. (2003). Sandstone petrography of continental depositional sequences of an intraplate rift basin: Western Cameros Basin (North Spain). Journal of Sedimentary Research, 73: 309-327. https://doi.org/10.1306/082602730309 , 2007Arribas, J.; Ochoa, M.; Mas, R.; Arribas, M.E. & González-Acebrón, L. (2007). Sandstone petrofacies in the northwestern sector of the Iberian Basin. Journal of Iberian Geology, 33: 191-206., 2014Arribas, J.; González-Acebrón, L.; Omodeo-Salé, S. & Mas, R. (2014). The influence of the provenance of arenite on its diagenesis in the Cameros Rift Basin (Spain). In: Sediment Provenance Studies in Hydrocarbon Exploration and Production (Scott, R.A.; Smyth, H.R.; Morton, A.C. & Richardson, N., Eds.), Geological Society of London, Special Publication, 386: 63-73. https://doi.org/10.1144/SP386.12 ; González-Acebrón et al., 2007González-Acebrón, L.; Arribas, J. & Mas, R. (2007). Provenance of fluvial sandstones at the start of late Jurassic-early Cretaceous rifting in the Cameros Basin (N. Spain). Sedimentary Geology, 202: 138-157. https://doi.org/10.1016/j.sedgeo.2007.05.008 , 2010González-Acebrón, L.; Arribas, J. & Mas, R. (2010). Sand provenance and implications for paleodrainage in a rifted basin: the Tera Group (N. Spain). Journal of Iberian Geology, 36: 179-184.), or in areas of relative tectonic quiescence (i.e., Marenssi et al., 2002Marenssi, S.A.; Net, L.I. & Santillana, S.N. (2002). Provenance, environmental and paleogeographic controls on sandstone composition in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sedimentary Geology, 150: 301-321. https://doi.org/10.1016/S0037-0738(01)00201-9 ; Amorosi & Zuffa, 2011Amorosi, A. & Zuffa, G.G. (2011). Sand composition changes across key boundaries of siliciclastic and hybrid depositional sequences. Sedimentary Geology, 236: 153-163. https://doi.org/10.1016/j.sedgeo.2011.01.003 ; Amorosi et al., 2012Amorosi, A.; Guidi, R.; Mas, R. & Falanga, E. (2012). Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context. International Journal of Earth Sciences, 101: 415-427. https://doi.org/10.1007/s00531-011-0675-x ; González-Acebrón et al., 2017González-Acebrón, L.; Pérez-Garrido, C.; Mas, R.; Arribas, J. & Götze, J. (2017). Provenance signatures recorded in transgressive sandstones of the upper Cretaceous Iberian Seaway. Journal of Sedimentary Research, 87: 152-166. https://doi.org/10.2110/jsr.2017.4 ).

For that, in this work, a detailed petrographic study of Upper Devonian rocks from the Iberian Chain and the diagenetic history of these quartz-rich sedimentary rocks is presented. So, it makes inferences on the provenance, and outlines the tectonic setting associated with the Ebro Massif. The provenance and diagenesis of the Upper Devonian rocks in the Iberian Chains are studied by means of a combination of optical microscopy (Basu et al., 1975Basu, A.; Young, S.W.; Suttner, L.J.; James, W.C. & Mack, G.H. (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 45: 873-882. https://doi.org/10.1306/212F6E6F-2B24-11D7-8648000102C1865D ; Young, 1976Young, S.W. (1976). Petrographic textures of detrital polycrystalline quartz as an aid in interpreting crystalline source rocks. Journal of Sedimentary Research, 46: 595-603. https://doi.org/10.1306/212F6FFA-2B24-11D7-8648000102C1865D ; Tortosa et al., 1991Tortosa, A.; Palomares, M. & Arribas, J. (1991). Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. In: Developments in Sedimentary Provenance Studies (Morton, A.C.; Todd, S.P. & Haughton, P.D.W. Eds.), Geological Society of London, Special Publication, 157: 47-54. https://doi.org/10.1144/GSL.SP.1991.057.01.05 ), scanning electron microscopy (Kwon & Boggs, 2002Kwon, Y.I. & Boggs Jr., S. (2002). Provenance interpretation of Tertiary sandstones from the Cheju Basin (NE East China Sea): a comparison of conventional petrographic and scanning cathodoluminescence techniques. Sedimentary Geology, 152: 29-43. https://doi.org/10.1016/S0037-0738(01)00284-6 ), atomic absorption spectroscopy, X-ray fluorescence and X-ray diffraction (OM/SEM/AAS/XRF/XRD). In this sense, AAS and XRF analysis were used to determine the content of Ca, Mg, Fe, Mn, Na, K and Sr (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.); and XRD analysis was used to determine the clay´s crystalline phases.

Geological setting

 

The Devonian materials of the Iberian Chains have been included into the Herrera Unit (Carls, 1983Carls, P. (1983). La zona Asturoccidental-Leonesa en Aragón y el Macizo del Ebro como continuación del Macizo Cantábrico. In: Libro Jubilar J. M. Ríos, I.G.M.E., 3, 11-32.; Gozalo & Liñán, 1988Gozalo, R. & Liñan, E. (1988). Los materiales hercínicos de la Cordillera Ibérica en el contexto del Macizo Ibérico. Estudios Geológicos, 44: 399-404. https://doi.org/10.3989/egeol.88445-6556 ; Fig. 1.A).The outcrops of Upper Devonian rocks are located in two areas: The Montalbán Anticline from the NE Iberian Chains (Carls & Lages, 1983Carls, P. & Lages, R. (1983). Givetium und Ober-Devon in den östlichen Iberischen Ketten (Spanien). Zeitschrift der Deutschen Geologischen Gesellschaft, 134: 119-142. https://doi.org/10.1127/zdgg/134/1983/119 ; Carls et al., 2004Carls, P.; Gozalo, R.; Valenzuela-Ríos, J. I. & Truyols-Massoni, M. (2004). La sedimentación marina devónico-carbonífera. In: Geología de España (Vera, J. A., Ed. principal). Sociedad Geológica de España - Instituto Geológico y Minero, 475-479.) and the Tabuenca and Rodanas Area from the NW Iberian Chains (Gozalo, 1986Gozalo, R. (1986). La serie estratigráfica del Devónico Superior de la Sierra de Tabuenca (Cadena Ibérica Oriental). Resumenes de Tesina. Universidad de Zaragoza, Curso 83-84: 111-122., 1994Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.; Bauluz, 1997Bauluz, B. (1997). Caracterización mineralógica y geoquímica de materiales detríticos precámbricos y paleozoicos de las Cadenas Ibéricas: evolución post-sedimentaria. Tesis Doctoral, Universidad de Zaragoza, 341 pp.; Bauluz et al., 2000Bauluz, B.; Mayayo, M.J.; Fernández-Nieto, C. & González López, J.M. (2000). Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 168: 135-150. https://doi.org/10.1016/S0009-2541(00)00192-3 ; Torrijo et al., 2000Torrijo, F.J.; Mandado, J.; Sanz, F.J., Bona, M.E. & Acero, P. (2000). Estimación de la profundidad de enterramiento y deformación compactacional asociada, existente durante el crecimiento de concreciones carbonatadas de la Fm. Rodanas, Tabuenca (Zaragoza). Geo-Temas, 1 (3), 303-306., 2001Torrijo, F.J.; Mandado, J.; Acero, P. & Bona, M.E. (2001). Modelización genética de concreciones carbonatadas: Aplicación al Devónico de Tabuenca (Cordillera Ibérica, España). Estudios Geológicos, 57: 115-127. https://doi.org/10.3989/egeol.01573-4131 ; Gozalo et al., 2001Gozalo, R.; Carls, P.; Valenzuela-Ríos, J.I. & Pardo Alonso, M.V. (2001). El Devónico Superior de Tabuenca (Provincia de Zaragoza). In: La Era Paleozoica. El desarrollo de la vida marina, Homenaje al Prof. Jaime Truyols (Gámez-Vintaned, J.A. & Liñán, E., Eds.), Memorias de las VII Jornadas Aragonesas de Paleontología, Ricla, 169-190., 2017Gozalo, R.; Valenzuela-Ríos, J.I.; Pardo Alonso, M.V.; Liao, J.-C. & Carls, P. (2017). Late Devonian in the Barranco del Molino (Tabuenca) Iberian Chains (NE Spain). Berichte des Institutes für Erdwissenschaften der Karl-Franzens-Universität, 23: 111-123.; García-Alcalde et al., 2002García-Alcalde, J. L.; Carls, P.; Pardo Alonso, M. V.; Sanz López, J.; Soto, F.; Truyols-Massoni, M. & Valenzuela-Ríos, J. I. (2002). Devonian. In: The Geology of Spain. (Gibbons, W. & Moreno, T., eds.), Geological Society, London, 67-91. https://doi.org/10.1144/GOSPP.6 ; Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.; Carls et al., 2004Carls, P.; Gozalo, R.; Valenzuela-Ríos, J. I. & Truyols-Massoni, M. (2004). La sedimentación marina devónico-carbonífera. In: Geología de España (Vera, J. A., Ed. principal). Sociedad Geológica de España - Instituto Geológico y Minero, 475-479.). The Upper Devonian rocks of the Tabuenca and Rodanas Area (Fig. 1.B) are composed of 1300 m of mostly siliciclastic materials with up to 30 m interbedded carbonatic rocks (Gozalo, 1986Gozalo, R. (1986). La serie estratigráfica del Devónico Superior de la Sierra de Tabuenca (Cadena Ibérica Oriental). Resumenes de Tesina. Universidad de Zaragoza, Curso 83-84: 111-122., 1994Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.; Fig. 2). The age of these rocks span from the Early Frasnian to the Late Fammenian (Gozalo, 1986Gozalo, R. (1986). La serie estratigráfica del Devónico Superior de la Sierra de Tabuenca (Cadena Ibérica Oriental). Resumenes de Tesina. Universidad de Zaragoza, Curso 83-84: 111-122., 1994Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.; Montesinos & Gozalo, 1987Montesinos, J.R. & Gozalo, R. (1987). Schindewolfoceras y otras formas de ammonoideos en el Devónico Superior de la Cordillera Ibérica. Revista Española de Paleontología, 2, 27-32.; Montesinos et al., 1990Montesinos, J.R., Truyols-Massoni, M. & Gozalo, R. (1990). Una aproximación al límite Frasniense-Fameniense en la Sierra de Tabuenca (NE de España). Revista Española de Paleontología, 5, 35-39.; Carls & Valenzuela, 2002Carls, P. & Valenzuela-Ríos, J.I. (2002). Devonian-Carboniferous rocks from the Iberian Cordillera. Cuadernos del Museo Geominero, 1: 299-314.; Valenzuela et al., 2002Valenzuela, J.I.; Gozalo, R. & Pardo Alonso, M.V. (2002). Los conodontos frasnienses y el límite Frasniense/Fameniense en Tabuenca (provincia de Zaragoza), Cadenas Ibéricas (NE de España). Revista Española de Micropaleontología, 34: 289-302.; Dojen et al., 2004Dojen, C.; Gozalo, R.; Carls, P. & Valenzuela, J. I. (2004). Early and Late Devonian ostracod faunas from the Iberian Chains (NE Spain). Revista Española de Micropaleontología, 36: 171-185.), and they are subdivided into four lithologic units by Gozalo (1994Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.; Fig. 2) named, in stratigraphical order, as Rodanas Formation, Bolloncillos Formation, Hoya Formation and Huechaseca Formation.

medium/medium-EGEOL-78-01-e144-gf1.png
Figure 1.  - A) Sketch map of the Iberian Peninsula showing the location of the Iberian Chain (based Gozalo and Liñán, 1988Gozalo, R. & Liñan, E. (1988). Los materiales hercínicos de la Cordillera Ibérica en el contexto del Macizo Ibérico. Estudios Geológicos, 44: 399-404. https://doi.org/10.3989/egeol.88445-6556 ) with indication of Devonian outcrops (based on Dojen et al., 2004Dojen, C.; Gozalo, R.; Carls, P. & Valenzuela, J. I. (2004). Early and Late Devonian ostracod faunas from the Iberian Chains (NE Spain). Revista Española de Micropaleontología, 36: 171-185.) and location of the studied area. B) Simplified geologic map of the study area (Gozalo, 1990Gozalo, R. (1990). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Tesis Universidad de Zaragoza, 297 pp., unpublished) showing the local stratigraphy and the location of the studied sections (based on Gozalo, 1994Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp. and Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.).
medium/medium-EGEOL-78-01-e144-gf2.png
Figure 2.  - Simplified stratigraphic section for the upper Devonian of the study area (Western Iberian Chain, NE Spain).

The Rodanas Fm. comprises thin-to medium-bedded, light brown, quartzose sandstones with hardgrounds, limolites as well as lutites with carbonate concretions and narrow episodes of carbonates. The fossil content hints at a deep sublittoral, or event circalittoral environment; above it, very important siliciclastic sedimentation, indicative of shallower environments, was developed (Gozalo, 1994Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.; Gozalo et al., 2017Gozalo, R.; Valenzuela-Ríos, J.I.; Pardo Alonso, M.V.; Liao, J.-C. & Carls, P. (2017). Late Devonian in the Barranco del Molino (Tabuenca) Iberian Chains (NE Spain). Berichte des Institutes für Erdwissenschaften der Karl-Franzens-Universität, 23: 111-123.). The Bolloncillos Fm. is an alternance of coarse to fine sandstone and lutites, the sandstone are predominant in the lower part and the lutites increasing in the upper part of the formation; the beginning of this formation represents a shallowing, that was followed by a deepening, but environments keep always within the sublittoral; the fossil and ichnofossil content of the upper part and the presence of organic matter would indicate a poorly oxygenated benthos, or even below the minimum oxygenation zone relate with the upper Kellwasser Event (Gozalo et al., 2017Gozalo, R.; Valenzuela-Ríos, J.I.; Pardo Alonso, M.V.; Liao, J.-C. & Carls, P. (2017). Late Devonian in the Barranco del Molino (Tabuenca) Iberian Chains (NE Spain). Berichte des Institutes für Erdwissenschaften der Karl-Franzens-Universität, 23: 111-123.). A transitional contact exists between this formation and the Bolloncillos and the Hoya formations, which consist of interbedded sandstones and lutites with siliceous nodules. Channel sand bodies-fills, ripple marks and through cross-bedding, typical sedimentary structures for shallow braided rivers (Miall, 1996Miall, A.D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Berlin, 582 pp.) can be identified in the sandstone layers of the Hoya Fm. in the study area, possibly representing a fluvial/coastal environment. The transition to the overlying Huechaseca Fm. is again gradational. This last formation consists almost exclusively of quartz arenites. The sandstones of these four units are clastic sedimentary rocks with >95% of quartz as the main constituent of the framework grains (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.).

The gradational transitions existing between these formations seem to reflect sea-level changes (Gozalo, 1994: Fig. 78Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.) in a shallow epicontinental sea, which existed in this area at least from the Late Devonian (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.), to the deposition of the overlying Carboniferous materials.

Materials and methods

 

General Concepts

 

Eleven representative stratigraphic sections were logged in the upper Devonian sedimentary sequence (Fig. 1) and over 620 samples were collected for analysis (Fig. 2). The position of samples in stratigrafic sections are provided in the electronic supplementary material accompanying this report (named Stratigraphical Profies). These samples were studied using combined OM/SEM/AAS/XRD analysis.

Quantitative Petrographic Analysis

 

Over 424 samples were analyzed to study their provenance and diagenesis, including those of the Rodanas Fm. (132 samples), the Bolloncillos Fm. (69 samples), the Hoya Fm. (218 samples) and the Huechaseca Fm. (5 samples). A Zeiss Jena 30-G0060 Jenapol polarizing microscope with 25x, 50x and 100x magnification was used for petrographic analysis. Standard point counting techniques were applied, using the integrated Gazzi-Zuffa point counting method (Zuffa, 1985Zuffa, G.G. (1985) Optical analyses of arenites: influence of methodology on compositional results. In: Provenance of Arenites (Zuffa, G.G., Ed.), Reidel, Cosenza, 165-189. https://doi.org/10.1007/978-94-017-2809-6_8 ), as recommended by Ingersool et al. (1984)Ingersoll, R.V.; Bulard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D. & Sares, S.W. (1984). The effect of grain size on detrital modes: a text of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54: 103-116. https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D and González-Acebrón (2017)González-Acebrón, L.; Pérez-Garrido, C.; Mas, R.; Arribas, J. & Götze, J. (2017). Provenance signatures recorded in transgressive sandstones of the upper Cretaceous Iberian Seaway. Journal of Sedimentary Research, 87: 152-166. https://doi.org/10.2110/jsr.2017.4 . 300 points were counted per thin section, distinguishing thirteen different components. This data was applied for sandstone classification and for estimating the amount of porosity lost by compaction, cementation and matrix/pseudomatrix, assuming 45% original porosity (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.; Bernet et al., 2007Bernet, M.; Kapoutsos, D. & Basset, K. (2007). Diagenesis and provenance of Silurian quartz arenites in south-eastern New York State. Sedimentary Geology, 201: 43-55. https://doi.org/10.1016/j.sedgeo.2007.04.006 ).

SEM Analysis

 

SEM analyses were carried out using ZEISS DSM 940A and JSM 6400 microscopes provided with with a Thechnosym 8200 MKII. Mineral identifications were evaluated by chemical spot analyses using an eXL-10 Link Analytical X-ray EDS analysis. Digital SEM images were taken at 150 to 200 µA beam current and 10-13 kV acceleration voltage at an average working distance of 20 mm. Images of 30x, 60x and 100x magnification were taken at 8000-pixel average. The samples studied are rock fragments included in resin.

Atomic Absorption Spectroscopy and X-Ray Fluorescence Analysis

 

The content of various chemical elements were determined with atomic absorption spectroscopy and X-ray fluorescence. AAS analysis was done with a Perkin-Elmer 3030 and the elements analysed and detection limits were the following: Ca (1000 ppm), Mg (20 ppm), Fe (100 ppm), Mn (6,5 ppm), Na (10 ppm) and K (50 ppm).

On the other hand, XRF was done in X-Assay Laboratory (XRAL) of Toronto and the elements analysed and detection limits were the following: SiO2 (0,01%), Al2O3 (0,01%), CaO (0,01%), MgO (0,01%), Na2O (0,01%), K2O (0,01%), Fe2O3 (0,01%), MnO (0,01%), TiO2 (0,01%), P2O5 (0,01%), Rb (2 ppm), Sr (2 ppm), Y (2 ppm), Zr (2 ppm), Nb (2 ppm) and Ba (20 ppm).

XRD Analysis

 

A Pananalytical Xpert with Detector XCeleretor and a Bruker D8 Advance with SOL-X were used for X-ray diffraction analysis. The determination of the clay’s crystalline phases was made as recommended by Galán & Martín Vivaldi (1973)Galán, E., & Martín Vivaldi, J.L. (1973). Caolines españoles. Geología, mineralogía y génesis. Parte 1. Boletin de la Sociedad Española de Cerámica y Vidrío, 12: 79-80..

Results

 

Petrological Characteristics

 

The arenites from the Rodanas Fm. are quartz arenites (Pettijohn et al., 1987Pettijohn, F.J.; Potter, P.E. & Siever, R. (1987). Sand and sandstone (2nd edition). Springer-Verlag, New York, 553 pp. https://doi.org/10.1007/978-1-4612-1066-5 ) composed of detrital quartz grains, mainly monocrystalline quartz, although some polycrystalline quartz grains with undulating extinction are observed. Silicate minerals (muscovite, tourmaline, zircon, potassium feldspar), apatite grains and lithic fragments are scarce, as well as no plagioclase grains were observed. Grain contacts in arenites are concavo-convex to sutured. The phyllosilicate matrix is very rare and is associated with the diagenetic alteration of the labile components (epimatrix) and the deformation of the ductile grains (mica) during the first phase of the compaction processes. The scarce interparticle porosity is sealed by siliceous cement of a syntaxial type and ferruginous cements. Limolites are a quartz wackes and lithic wackes (Pettijohn et al., 1987Pettijohn, F.J.; Potter, P.E. & Siever, R. (1987). Sand and sandstone (2nd edition). Springer-Verlag, New York, 553 pp. https://doi.org/10.1007/978-1-4612-1066-5 ), formed by phyllosilicate matrix of quartz grains, lithic fragments and micas (muscovite), in variable proportion.

In the Bolloncillos Fm., the arenites, similar to those of the Rodanas Fm., are also quartz wackes to lithic wackes (Pettijohn et al., 1987Pettijohn, F.J.; Potter, P.E. & Siever, R. (1987). Sand and sandstone (2nd edition). Springer-Verlag, New York, 553 pp. https://doi.org/10.1007/978-1-4612-1066-5 ), or quartz arenites to sublitharenites (Pettijohn et al., 1987Pettijohn, F.J.; Potter, P.E. & Siever, R. (1987). Sand and sandstone (2nd edition). Springer-Verlag, New York, 553 pp. https://doi.org/10.1007/978-1-4612-1066-5 ), although the latter in smaller proportion. The wackes are constituted, mostly, by quartz clasts and by lithic fragments and micas (muscovite) in minor proportion, and also, phyllosilicate and quartz matrix (15-20 %). The quartz arenites and sublitharenites are mainly by quartz clasts basically monocrystalline, although some polycrystalline quartz grains with undulating extinction are observed, and in minor proportion, sedimentary rock fragments, zircon, mica and apatite grains.

The Hoya Fm. has been subdivided into three members (Gozalo, 1994Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.) that from base to up are Filluelo Mb., Valdeinglés Mb. and Coscojar Mb. The Filluelo Mb. is a detrital alternance constituted by arenites and lutites-limolites. The Valdeinglés Mb. consists of an arenite-lutite alternance. Its limit with the underlain Filluelo Mb. is based on the augment of lutitic material and in a colour change (white to green and brown colours). The Coscojar Mb. consists of lutites with narrow intecalations of arenites. Generally, the arenites are sublitharenites to lithic wackes (Pettijohn et al., 1987Pettijohn, F.J.; Potter, P.E. & Siever, R. (1987). Sand and sandstone (2nd edition). Springer-Verlag, New York, 553 pp. https://doi.org/10.1007/978-1-4612-1066-5 ) formed by quartz clasts, basically monocrystalline, and in minor proportion, lithic fragments, very altered potassium feldspar, tourmaline (partially silicified) and mica grains. Grain contacts in arenites are concave-convex to sutured, and the phyllosilicate and quartz matrix (2-16 %) is associated with the diagenetic alteration of the labile components (epimatrix) and the deformation of the ductile grains (mica) in the first phase of the compaction processes.

In Huechaseca Fm., the arenites are quartz arenites (Pettijohn et al., 1987Pettijohn, F.J.; Potter, P.E. & Siever, R. (1987). Sand and sandstone (2nd edition). Springer-Verlag, New York, 553 pp. https://doi.org/10.1007/978-1-4612-1066-5 ) formed by quartz clasts, mainly monocrystalline quartz, although some polycrystalline quartz grains with undulating extinction are observed. Silicate mineral (muscovite, tourmaline, zircon, apatite), and lithic fragments grains are scarce, as well as no plagioclase grains were observed; and the phyllosilicate matrix is very rare (<1 %). Grain contacts are concave-convex to sutured (Fig. 3).

medium/medium-EGEOL-78-01-e144-gf3.png
Figure 3.  - Thin section photomicrographs of the upper Devonian sandstones from the Western Iberian Chain (Tabuenca, Spain). a) Cross-polarized OM image showing a tourmaline grain (white arrow) included into a quartz-grain (sample LG-022, Bolloncillos Formation). b) Cross-polarized OM image showing a detail of the sample CH-042 from the Hoya Formation. The mica (muscovite) grain (white arrow) has been mechanically deformed by the differential stress caused by the overburden. The surrounding quartz grains have been partly dissolved at the mica-quartz interfaces, explaining the highly conformable quartz/mica interfaces (Bjørkum, 1996Bjørkum, P.A. (1996). How important is pressure in causing dissolution of quartz in sandstones? Journal of Sedimentary Research, 66: 147-154. https://doi.org/10.1306/D42682DE-2B26-11D7-8648000102C1865D ). c-f) Cross-polarized OM images showing overgrowth quartz cement around detrital grains and concave-convex to sutured contacts. c) Sample BM1-013, Rodanas Formation. d) Sample BVi-004, Bolloncillos Formation. e) Sample CH-017, Hoya Formation. f) Sample BM2-035, Huechaseca Formation.

Analyses done using combined SEM and OM on individual quartz grains showed that the majority of the sand grains in the studied samples were identified as of plutonic origin, thanks to the presence of spider-web microcracks within the grains (Sprunt & Nur, 1979Sprunt, E.S. & Nur, A. (1979). Microcracking and healing in granites: New evidence from cathodoluminescence. Science, 205: 495-497. https://doi.org/10.1126/science.205.4405.495 ; Berner et al., 2007Bernet, M.; Kapoutsos, D. & Basset, K. (2007). Diagenesis and provenance of Silurian quartz arenites in south-eastern New York State. Sedimentary Geology, 201: 43-55. https://doi.org/10.1016/j.sedgeo.2007.04.006 ). Grains of potential volcanic affinity are almost exclusively restricted to the finest sand-sized fraction of the samples (Fig. 4).

medium/medium-EGEOL-78-01-e144-gf4.png
Figure 4.  - Thin section photomicrographs of the Upper Devonian sandstones from the Western Iberian Chain (Tabuenca, Spain). a) Cross-polarized OM image showing overgrowth quartz cements (white arrows) around detrital grains and concave-convex to sutured contacts in sample CH-038 of the Bolloncillos Formation. b) Cross-polarized OM image of sample BVi-004, Bolloncillos Formation, showing the presence of clay matrix (white arrows) between the quartz grains. c) Epimatrix (white arrow) associated to diagenetic alteration of a lithoclast appear in this cross-polarized OM image of sample CH-010, Hoya Formation. d) Cross-polarized OM image showing spider-web microcracks within the quartz grains (white arrows) in sample BM-002 of the Hoya Formation.

Geochemical Characteristics

 

The most pronounced compositional differences between the analysed samples are in the in SiO2 and Al2O3 content, which would reflect the different proportions of phyllosilicates and quartz present in each type of rock. In addition, there are noticeable differences in the average content in Fe2O3 due to synsedimentary and diagenetic processes. The proportion of TiO2 is also higher in the lutites than the other lithologies. The high correlation presented by Al2O3 with K2O and TiO2 would indicate that they are being provided primarily by phyllosilicates, while those with lower Fe2O3, would indicate they are also found in other mineral phases such as Fe-oxyhydroxides. In the case of CaO and MgO, no significant correlations are observed with Al2O3, suggesting they should be present in other mineral phases, possibly carbonates, especially in the Rodanas Fm. The samples analyzed by X-ray fluorescence, except the carbonated samples of the Rodanas Fm., were geochemically classified (Fig. 5) according to Herron (1988)Herron, M.M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58: 820-829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D , as suggested by Rollinson (1998) Rollinson, H.R. (1998). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London, 352 pp. .

medium/medium-EGEOL-78-01-e144-gf5.png
Figure 5.  - Classification of the analyzed samples following the rules of Herron (1988)Herron, M.M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58: 820-829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

In addition, it has been observed that the Rb, Cs, Ba, Sr, Th and U contents significant correlations with the amount of Al2O3. This would suggest that, in different proportions, the distribution of all of them is controlled by the presence of phyllosilicates (Dumitru et al., 2015Dumitru, T.A.; Ernst; W.G., Hourigan, J.K. & McLaughlin, R.J. (2015). Detrital zircon U-Pb reconnaissance of the Franciscan subduction complex in northwestern California. International Geology Review, 57: 767-800. https://doi.org/10.1080/00206814.2015.1008060 ). However, Sr presents a behavior lightly erratic, probably due to its presence in several mineral phases (i.e., carbonates, phyllosilicates...). Besides, the good linear interrelations that the Rb and the Cs present with the K2O, might indicate that, possibly, they are being controlled by the micaceous phases (Fig. 6). Zr exhibits a geochemical behavior similar to Hf (Bauluz, 1997Bauluz, B. (1997). Caracterización mineralógica y geoquímica de materiales detríticos precámbricos y paleozoicos de las Cadenas Ibéricas: evolución post-sedimentaria. Tesis Doctoral, Universidad de Zaragoza, 341 pp.), reflected in the high correlation between both (Zr/Hf = 30-40). This would indicate that they are being contributed mainly by zircons (Murali et al., 1983Murali, A.V.; Parthasarathy, R.; Mahadevan, T.M. & Sankar Das, M. (1983). Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments - A case study on Indian zircons. Geochimica et Cosmochimica Acta, 47: 2047-2052. https://doi.org/10.1016/0016-7037(83)90220-X ).

medium/medium-EGEOL-78-01-e144-gf6.png
Figure 6.  - Graphical representation of the global samples analyzed, differentiated by formations. In addition, the compositions of PAAS and the upper continental crust (Taylor & McLennan, 1985Taylor, S.R. & McLennan, S.M. (1985). The continental crust: its composition and evolution. Blackwell Science Ltd, Oxford, 328 pp.) have been also projected: A) Th-Al2O3; B) Rb-Al2O3; C) Rb-K2O; D) Sr-Al2O3.

Finally, with regard to rare-earth elements (REE), they are provided with the information contributed by Bauluz (1997)Bauluz, B. (1997). Caracterización mineralógica y geoquímica de materiales detríticos precámbricos y paleozoicos de las Cadenas Ibéricas: evolución post-sedimentaria. Tesis Doctoral, Universidad de Zaragoza, 341 pp.. It show that both light and heavy rare earth elements (LREE and HREE) have a similar geochemical behavior. That is, they tend to concentrate on the same type of mineral phases. However, LREE and HREE tend to have slightly different geochemical behaviors.

Detailed cuantitative tables containing the results derived from the complete geochemical analyses are provided in the electronic supplementary material accompanying this paper (named Geochemical Data).

Sand-Sized Grains

 

The sand-sized grains from the Hoya Fm. samples are mostly angular to sub-rounded in shape. Most of the sand-sized grains in the Rodanas, Bolloncillos and Huechaseca formations’ samples have a higher textural maturity, being mainly sub-rounded to rounded. Grain contacts in all these formations range from concave-convex to sutured. Additional petrographic information of arenites in upper Devonian Formations are provided in Table 2.

Porosity and Cementation

 

Only 63 samples (14.8 % of total samples) presented secondary porosity, ranging between 0.1 and 1.2 %, and no primary porosity was found in any of the samples because it was occluded by compaction, post depositional cementation and by the formation of matrix/epimatrix. Compaction is, in general, the most important factor of loss of primary porosity and resulted in an increase in contact strength, with more concave-convex and sutured contacts than long or point contacts, brittle deformation and deformation of ductile grains (e.g. muscovite). Quartz cementation is the second important factor for porosity reduction. Quartz cement appears in most samples with various grey shades in panchromatic SEM images. Samples with a relatively high matrix content were less affected by compaction.

Discussion

 

Diagenetic History

 

Compaction is the most important diagenetic process along the first 2 km of burial, whereas cementation increases at higher depths, especially when temperatures reach 85ºC or more (Worden & Morad, 2000Worden, R.H. & Morad, S. (2000) Quartz cementation in oil field sandstones: a review of the key controversies. In: Quartz Cementation in Sandstones (Worden, R.H. & Morad, S., Eds.), IAS Special Publication, 29: 1-20. https://doi.org/10.1002/9781444304237.ch1 ; Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.; Bernet et al., 2007Bernet, M.; Kapoutsos, D. & Basset, K. (2007). Diagenesis and provenance of Silurian quartz arenites in south-eastern New York State. Sedimentary Geology, 201: 43-55. https://doi.org/10.1016/j.sedgeo.2007.04.006 ; Surpless, 2015Surpless, K.D. (2015). Geochemistry of the Great Valley Group: an integrated provenance record. International Geology Review, 57: 747-766. https://doi.org/10.1080/00206814.2014.923347 ). In the Iberian Chains at present approximately 2 km thickness of the stratigraphically overlying Carboniferous, Permian and Triassic deposits exist (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.). Therefore, upper Devonian quartz arenite samples from the Iberian Chains are characterized by post-depositional compaction and quartz cementation.

Several diagenetic processes have been distinguished in the samples studied. The development of the diagenetic structures (nodules and concretions) that appear in the Rodanas and Hoya formations, took place within the early diagenetic processes (Torrijo et al., 1998Torrijo, F.J.; Mandado, J.; Sanz, F.J.; Bona, M.E.; Acero, P. & Joven, R.B. (1998). Las concreciones de la Formación Alternancia de Rodanas: Geometría y geoquímica. Revista de la Academia de Ciencias de Zaragoza, 2ª Serie, 53: 331-341., 2000Torrijo, F.J.; Mandado, J.; Sanz, F.J., Bona, M.E. & Acero, P. (2000). Estimación de la profundidad de enterramiento y deformación compactacional asociada, existente durante el crecimiento de concreciones carbonatadas de la Fm. Rodanas, Tabuenca (Zaragoza). Geo-Temas, 1 (3), 303-306., 2001Torrijo, F.J.; Mandado, J.; Acero, P. & Bona, M.E. (2001). Modelización genética de concreciones carbonatadas: Aplicación al Devónico de Tabuenca (Cordillera Ibérica, España). Estudios Geológicos, 57: 115-127. https://doi.org/10.3989/egeol.01573-4131 , 2004aTorrijo, F.J.; Mandado, J. & Bona, M.E. (2004a). Caracterización morfológica de los nódulos silíceos de la Fm. Hoya (Tabuenca, Zaragoza). Implicaciones genéticas. Geo-Temas, 6 (1): 121-123., 2004bTorrijo, F.J.; Mandado, J. & Bona, M.E. (2004b). Estimación del tiempo de crecimiento de las concreciones de la Fm. Rodanas (Tabuenca, Zaragoza). Geo-Temas, 6 (1): 129-131., 2005Torrijo, F.J.; Mandado, J. & Bona, M.E. (2005). Modelización genética de nódulos silíceos: Aplicación al Devónico de Tabuenca (Cordillera Ibérica, España) I. Caracterización morfológica y composicional. Estudios Geológicos, 61: 9-23. https://doi.org/10.3989/egeol.05611-237 ; Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.). As final processes, the presence of concave-convex and sutured contacts between the skeleton constituents can be noted. The presence of iron oxides in these materials is both synsedimentary (indicated by the presence of banding) and properly diagenetic or hydrothermal (presence of hematites associated with crack fillers and epidiagenetic (genesis of Fe and Mn oxides and oxyhydroxides).

The post-depositional quartz cementation produced syntaxial overgrowths. These cements have diverse chemical compositions, indicating that these cements are not genetically linked. Silica sources for cementation in these formations were controlled by the lack of lithic fragments in the rocks and feldspars (e.g. Worden & Morad, 2000Worden, R.H. & Morad, S. (2000) Quartz cementation in oil field sandstones: a review of the key controversies. In: Quartz Cementation in Sandstones (Worden, R.H. & Morad, S., Eds.), IAS Special Publication, 29: 1-20. https://doi.org/10.1002/9781444304237.ch1 ; Caja et al., 2010Caja, M.A.; Marfil, R.; García, D.; Remacha, E.; Morad, S.; Mansurbeg, H.; Amorosi, A.; Martínez-Calvo, C. & Lahoz-Beltrá, R. (2010). Provenance of siliciclastic and hybrid turbiditic arenites of the Eocene Hecho Group, Spanish Pyrenees: implications for the tectonic evolution for a foreland basin. Basin Research, 22: 157-180. https://doi.org/10.1111/j.1365-2117.2009.00405.x ). Therefore, the dissolution of the quartz grains by pressure-dissolution during compaction, or the infiltration of silica-bearing pore fluids from adjacent areas, may be the most likely silica source (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.; Bernet et al., 2007Bernet, M.; Kapoutsos, D. & Basset, K. (2007). Diagenesis and provenance of Silurian quartz arenites in south-eastern New York State. Sedimentary Geology, 201: 43-55. https://doi.org/10.1016/j.sedgeo.2007.04.006 ). Evidences for this process were found in the studied samples.

Aparicio et al. (1991)Aparicio, A.; Brell, J.M.; García, R.; Tena, J.M. & Gómez, J. (1991). El metamorfismo de bajo grado en el Paleozoico del sector central de la Cordillera Ibérica. Boletín Geológico y Minero, 102: 735-747. indicate, for the Paleozoic of the Iberian Chains, a progressive decrease in the diagenetic degree reached by the materials from the Precambrian (with values of illite crystallinity index of 3.25) and Cambrian materials (with an crystallinity average value of 3.6) to the Ordovician (with increasing values ranging from 3.8 at the base to 5.2 at the top of the sequence). These cristallinity indexes place the Precambrian rocks in conditions of the epizone; the Cambrian rocks in the Epizone-Anchizone boundary, and the Ordovician rocks in the anchizone conditions.

Similar conclusions are obtained for by Bauluz et al. (1998)Bauluz, B.; Fernández-Nieto, C. & González López, J.M. (1998). Diagenesis-very low grade of clastic Cambrian and Ordovician sedimentary rocks from the Iberian range (Spain). Clay Minerals, 33: 373-393. https://doi.org/10.1180/claymin.1998.033.3.02 in Cambrian-Ordovician rocks of the Iberian Chains. They indicate a gradual evolution from the Epizone-Anchizone limit for Cambrian rocks or to the Anchizone - Diagenesis-Anchizone for the Ordovician rocks. These data would be consistent with a simple model of progrant evolution of the phyllosilicates, being the progressive increase of temperature during the burial the main controlling factor: the oldest materials reach higher depths of burial (i.e. higher temperatures) and are those achieve a more advanced stage in the mineralogical transformation sequence of the phyllosilicates.

The results presented by Aparicio et al. (1991)Aparicio, A.; Brell, J.M.; García, R.; Tena, J.M. & Gómez, J. (1991). El metamorfismo de bajo grado en el Paleozoico del sector central de la Cordillera Ibérica. Boletín Geológico y Minero, 102: 735-747. and Gimeno (1999)Gimeno, M.J. (1999). Estudio del comportamiento geoquímico de las tierras raras en un sistema natural de aguas acidas (arroyo del Val-Bádenas). Tesis Doctoral, Universidad de Zaragoza, 503 pp. for the Silurian of the Iberian Chains would also be consistent with this model: the recorded illite crystallinity indexes and the observed diagenetic processes are typical for an advanced diagenetic environment (Fig. 7). Bescós (1988)Bescós, J.M. (1988). Estudio petrológico de las rocas fosfáticas y litologías asociadas del Silúrico-Devónico de la Depresión del río Cámaras (Zaragoza-Teruel). Tesina, Universidad de Zaragoza, 151 pp. for Silurian-Devonian deposits from the Iberian Chain also indicates an evolutionary stage proper to the diagenetic environment and far away from the conditions of the anchizone.

medium/medium-EGEOL-78-01-e144-gf7.png
Figure 7.  - Schematic Diagram showing the diagenetic evolution of the Paleozoic materials (Precambrian-Carboniferous) of the Iberian Chain. Illite crystallinity data were retrieved from Aparicio et al. (1991)Aparicio, A.; Brell, J.M.; García, R.; Tena, J.M. & Gómez, J. (1991). El metamorfismo de bajo grado en el Paleozoico del sector central de la Cordillera Ibérica. Boletín Geológico y Minero, 102: 735-747.. Only geothermometric processes are considered. Note that the history of the crystallinity of the illite is consistent with the usual diagenetic evolution of the materials that gradually reach higher values of Temperature and Pressure with burial deep. The illite crystallinity values of Devonian are abnormally high according with Aparicio et al. (1991)Aparicio, A.; Brell, J.M.; García, R.; Tena, J.M. & Gómez, J. (1991). El metamorfismo de bajo grado en el Paleozoico del sector central de la Cordillera Ibérica. Boletín Geológico y Minero, 102: 735-747.. Nevertheless, the presence of berthierine in the Silirian-Devonian materials led to refer simple burial diagenesis model. Modified from Gimeno (1999)Gimeno, M.J. (1999). Estudio del comportamiento geoquímico de las tierras raras en un sistema natural de aguas acidas (arroyo del Val-Bádenas). Tesis Doctoral, Universidad de Zaragoza, 503 pp..

Therefore, only to be explained the cause of the abnormally high values of the crystallinity of the illite for Lower-Medium Devonian rocks (Aparicio et al., 1991Aparicio, A.; Brell, J.M.; García, R.; Tena, J.M. & Gómez, J. (1991). El metamorfismo de bajo grado en el Paleozoico del sector central de la Cordillera Ibérica. Boletín Geológico y Minero, 102: 735-747.). However, according to their mineralogy (Fig. 7), they would fall within the general pattern of simple burial models. It is therefore reasonable to think that the crystallinity values recorded in the Upper Devonian from Tabuenca area would fall within the ranges defined by the materials placed immediately under and by the overlying materials, always within the diagenetic environment. According to Aparicio et al. (1991)Aparicio, A.; Brell, J.M.; García, R.; Tena, J.M. & Gómez, J. (1991). El metamorfismo de bajo grado en el Paleozoico del sector central de la Cordillera Ibérica. Boletín Geológico y Minero, 102: 735-747., the appearance of prograde or retrograde effects on the degree of crystallinity of the illite from the Devonian rocks is due to the effect of the hydrothermal activity of igneous intrusions (Gimeno, 1999Gimeno, M.J. (1999). Estudio del comportamiento geoquímico de las tierras raras en un sistema natural de aguas acidas (arroyo del Val-Bádenas). Tesis Doctoral, Universidad de Zaragoza, 503 pp.).

As a summary, it can be inferred that the materials constituting the Upper Devonian of the Iberian Chains in the area of Tabuenca did not reached an advanced diagenetic stage. They would be placed in the proper diagenetic environment, reaching maximum temperatures of 125-150ºC (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.).

Source Area Composition

 

The abundance of trace elements in detritic sedimentary rocks has been commonly used to trace the source area composition (e.g. McLennan et al., 1983McLennan, S.M.; Taylor, S.R. & Kroner, A. (1983) Geochemical evolution of Archean shales from South Africa I. The Swaziland and Pongola Supergroups. Precambriam Research, 22: 93-124. https://doi.org/10.1016/0301-9268(83)90060-8 ; Bhatia, 1985Bhatia, M.R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45: 97-113. https://doi.org/10.1016/0037-0738(85)90025-9 ; Taylor & McLennan, 1989; Wronkiewicz & Condie, 1990Wronkiewicz, D.J. & Condie, K.C. (1990). Geochemistry and mineralogy of sediments from the Vestersdorp and Transvaal Supergroup, South Africa: Cratonic evolution during the early Proterozoic. Geochimica et Cosmochimica Acta, 54: 343-354. https://doi.org/10.1016/0016-7037(90)90323-D ; Shukla et al., 2020Shukla, A.D.; George, B.G. & Ray, J. (2020). Evolution of the Proterozoic Vindhyan Basin, Rajasthan, India: insights from geochemical provenance of siliciclastic sediments. International Geology Review, 62: 153-167. https://doi.org/10.1080/00206814.2019.1594412 ; George & Ray, 2021George, B.G. & Ray, J. (2021). Depositional history of the Mesoproterozoic Chhattisgarh Basin, central India: insights from geochemical provenance of siliciclastic sediments. International Geology Review, 63: 380-395. https://doi.org/10.1080/00206814.2020.1712557 ). In this sense, for the case of the rocks studied, the triangular diagrams La-Th-Sc and Th-Hf-Co have been chosen. And besides, to calculate the approximate percentage of felsic and maphic volcanic rocks in the source area, a Co/Th vs. La/Sc diagram has been used (McLennan et al., 1983McLennan, S.M.; Taylor, S.R. & Kroner, A. (1983) Geochemical evolution of Archean shales from South Africa I. The Swaziland and Pongola Supergroups. Precambriam Research, 22: 93-124. https://doi.org/10.1016/0301-9268(83)90060-8 ; McLennan, 1989McLennan, S.M. (1989) Rare earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. In: Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B.R. & McKay, G.A., Eds.), Mineral Society American: 169-200. https://doi.org/10.1515/9781501509032-010 ).

The results suggest that the lutites are similar to the PAAS-type slates, which would indicate that their composition would be similar to that of the upper continental crust. Therefore, the primitive source area would be predominantly of a felsic type. Besides, the lutites of the Fm. Rodanas could come from source areas where the maphic material represented about the 15% of the constituents, while in the more recent formations (Bolloncillos Fm. and Hoya Fm.) the proportion increases up to the 25% (Fig. 8).

medium/medium-EGEOL-78-01-e144-gf8.png
Figure 8.  - Graphical representation of the average compositions of the lutites of the upper Devonian of Tabuenca. In addition, the compositions of PAAS, and the oceanic, upper continental and archean crusts (Taylor & McLennan, 1985Taylor, S.R. & McLennan, S.M. (1985). The continental crust: its composition and evolution. Blackwell Science Ltd, Oxford, 328 pp.) have been also projected: A) Th-La-Sc; B) Th-Hf-Co; C) Co/Th vs. La/Sc.

Detritic Rocks Provenance and Paleoclimate

 

The arenites of the Rodanas and the Huechaseca formations are composed of mono- and rare polycrystalline quartz (total quartz > 90%). Silicate minerals (muscovite, tourmaline, zircon, potassium feldspar), apatite grains and rock fragments grains are scarce, as well as no plagioclase grains were observed. This composition corresponds that of sediments derived from recycled orogenic or craton interior sources according to Dickinson et al. (1983)Dickinson, W.R.; Beard, S.L.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94: 222-235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2 . On the other hand, the arenites of Bolloncillos and the Hoya Formations have a sand-sized framework composed of mono- and polycrystalline quartz (total > 75%). Feldspar grains are scarce, and no plagioclase grains were observed. However, muscovite, tourmaline, zircon and apatite are more abundant than in the Rodanas and in the Huechaseca formations. These compositions (Fig. 9) are typical from craton interior or recycled orogenic sources (Dickinson et al., 1983Dickinson, W.R.; Beard, S.L.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94: 222-235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2 ).

medium/medium-EGEOL-78-01-e144-gf9.png
Figure 9.  - Sandstone provenance diagrams after Dickinson et al. (1983)Dickinson, W.R.; Beard, S.L.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94: 222-235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2 . Abbreviations: Q - total quartz (includes mono- and polycrystalline quartz); Qm - monocrystalline quartz; F - Feldespars; L - Lithoclasts (including polycrystalline quartz).

In this way, primary source areas of the siliciclastic materials from the upper Devonian formations are located to the Northeast (Oliveira et al., 1986Oliveira, J.T.; García-Alcalde, J.L.; Liñan, E. & Truyols-Massoni, J. (1986). The Famennian of the Iberian Peninsula. Annales de la Société Géologique de Belgique, 11: 159-174.) and are part of a crystalline basement and quartz-rich sedimentary cover units (the Ebro Massif, see Carls, 1983Carls, P. (1983). La zona Asturoccidental-Leonesa en Aragón y el Macizo del Ebro como continuación del Macizo Cantábrico. In: Libro Jubilar J. M. Ríos, I.G.M.E., 3, 11-32., 1999Carls, P. (1999), El Devónico de Celtiberia y sus fósiles. In: 25 años de Paleontología Aragonesa, Homenaje al Prof. Leandro Sequeiros (Gámez-Vintaned, J.A. & Liñán, E., Eds.) Memorias de las VI Jornadas Aragonesas de Paleontología, Ricla, 101-164.). Given that no plutonic rocks were exposed in this area during the Devonian (Gozalo & Liñan, 1988Gozalo, R. & Liñan, E. (1988). Los materiales hercínicos de la Cordillera Ibérica en el contexto del Macizo Ibérico. Estudios Geológicos, 44: 399-404. https://doi.org/10.3989/egeol.88445-6556 ; Carls, 1999Carls, P. (1999), El Devónico de Celtiberia y sus fósiles. In: 25 años de Paleontología Aragonesa, Homenaje al Prof. Leandro Sequeiros (Gámez-Vintaned, J.A. & Liñán, E., Eds.) Memorias de las VI Jornadas Aragonesas de Paleontología, Ricla, 101-164.), it seems probable that the quartz grains were second-cycle grains derived from sedimentary rocks which could have lost their inherited quartz overgrowths by abrasion during transport. The few available lithic fragments found in these sediments also reflect a combination of crystalline basement and sedimentary sources (Arribas et al., 2014Arribas, J.; González-Acebrón, L.; Omodeo-Salé, S. & Mas, R. (2014). The influence of the provenance of arenite on its diagenesis in the Cameros Rift Basin (Spain). In: Sediment Provenance Studies in Hydrocarbon Exploration and Production (Scott, R.A.; Smyth, H.R.; Morton, A.C. & Richardson, N., Eds.), Geological Society of London, Special Publication, 386: 63-73. https://doi.org/10.1144/SP386.12 ; Konstantinou et al., 2014Konstantinou, A.; Wirth, K.R.; Vervoort, J.D.; Malone, D.H.; Davidson, C. & Craddock, J.P. (2014). Provenance of Quartz Arenites of the Early Paleozoic Midcontinent Region, USA. The Journal of Geology, 122: 201-216. https://doi.org/10.1086/675327 ). Sediment recycling in upper Devonian materials of the Iberian Chains was also suggested by Bauluz (1997)Bauluz, B. (1997). Caracterización mineralógica y geoquímica de materiales detríticos precámbricos y paleozoicos de las Cadenas Ibéricas: evolución post-sedimentaria. Tesis Doctoral, Universidad de Zaragoza, 341 pp. and Torrijo (2003)Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp..

All the arenites of these above-mentioned formations are coastal sediments (Fig. 10) derived from quartz-rich sources. The most likely candidate to explain the high maturity of the studied arenites is a climatic influence (Torrijo, 2003Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.). Currently, it is considered that, from Cambrian to Devonian ages, with the exception of the South Portuguese Zone that probably belonged to Avalonia, the whole Iberian Peninsula was part of the North Gondwana Province that extended along the northern margin of the African part of the Gondwana landmass (Gutiérrez-Marco et al., 2001Gutiérrez-Marco, J.C.; Sarmiento, G.N.; Robardet, M., Rábano, I. & Vanek, J. (2001). Upper Silurian fossils of Bohemian type from NW Spain and their palaeographical significance. Journal of the Czech Geological Society, 46: 161-172., and references therein). Thereby, the latitudinal position of the present Iberian can thus be estimated only roughly as intermediate between the rather warm or cold temperature of high latitudes (ca. 50ºS) of the latest Ordovician times, and the warmer temperatures of the subtropical latitudes (ca. 35ºS) of the Devonian succession (Robardet & Gutiérrez-Marco, 2002Robardet, M. & Gutiérrez-Marco, J.C. (2002). Silurian. In: Geology of Spain. (Gibbsons, W. & Moreno, T., Eds.), Geological Society of London, London, 51-66. https://doi.org/10.1144/GOSPP.5 ), with a high rainfall regime and high mean-annual temperatures. So, these climatic conditions may have led to a rapid weathering and breakdown of unstable rock fragments during transport, deposition and along the early diagenesis, enriching the sediments in quartz grains (Basu, 1985aBasu, A. (1985a). Influence of climate and relief on compositions of sands released at source areas. In: Provenance of Arenites (Zuffa, G.G., Ed.), Reidel, Dordrecht, 1-18. https://doi.org/10.1007/978-94-017-2809-6_1 , bBasu, A. (1985b). Reading provenance from detrital quartz. In: Provenance of Arenites (Zuffa, G.G., Ed.), Reidel, Dordrecht, 231-249. https://doi.org/10.1007/978-94-017-2809-6_11 ).

medium/medium-EGEOL-78-01-e144-gf10.png
Figure 10.  - Average composition of the arenites from the western Iberian Chain (Tabuenca, Spain). Data obtained from Bauluz (1997)Bauluz, B. (1997). Caracterización mineralógica y geoquímica de materiales detríticos precámbricos y paleozoicos de las Cadenas Ibéricas: evolución post-sedimentaria. Tesis Doctoral, Universidad de Zaragoza, 341 pp. are represented in ternary trace elements diagrams proposed by Bhatia & Crook (1986)Bhatia, M.R. & Crook, K.A.W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basin. Contributions to Mineralogy and Petrology, 92: 181-193. https://doi.org/10.1007/BF00375292 . In addition, the compositions of PAAS and the upper continental crust (Taylor & McLennan, 1985Taylor, S.R. & McLennan, S.M. (1985). The continental crust: its composition and evolution. Blackwell Science Ltd, Oxford, 328 pp.) have been also projected: “Oceanic Island Arc”; “Continental Island Arc”; “Active Continental Margin” and “Passive Continental Margin”.

Conclusions

 

A geological characterization of the Upper Devonian siliciclastic formations of Tabuenca area (Iberian Chains, Spain) was conducted, studying their provenance and diagenesis. Results show that these materials are mainly composed of quartz-rich sediments that have experienced intense weathering before and during their deposition and posteriorly, underwent alteration, compaction, and quartz cementation during diagenesis. No primary porosity was recorded in the quartz arenites of any unit, and the development of secondary porosity was rare. Sand-sized grains of the Hoya Formation samples were mostly angular to sub-rounded, while most of the sand-sized grains of the Rodanas, Bolloncillos and the Huechaseca formations samples exhibited higher textural maturity, were mainly sub-rounded to rounded in shape, and showed concave-convex to sutured grain contacts. The majority of sand grains in the studied samples were regarded to be of plutonic origin. Quartz grains of potential volcanic affinity are almost exclusively restricted to the finest sand-sized fraction of the samples. All samples show evidence of quartz cementation after deposition.

Several diagenetic processes have been distinguished in the samples studied. Thus, the presence of concave-convex and sutured contacts between the skeleton constituents can be noted. Besides, the presence of iron oxides in these materials is both synsedimentary and properly diagenetic or hydrothermal:

  1. Upper Devonian quartz arenite samples from the Iberian Chains are characterized by post-depositional compaction and quartz cementation. The dissolution of the quartz grains by pressure-dissolution during compaction, or the infiltration of silica-bearing pore fluids from adjacent areas, may be the most likely silica source. The post-depositional quartz cementation produced syntaxial overgrowths.

  2. It can be inferred that the materials constituting the Upper Devonian of the Iberian Chains in the area of Tabuenca did not reached an advanced diagenetic stage. They would be placed in the proper diagenetic environment, reaching maximum temperatures of 125-150ºC.

  3. The results suggest that the lutites are similar to the PAAS-type slates, which would indicate that their composition would be similar to that of the upper continental crust. Therefore, the primitive source area would be predominantly of a felsic type. Besides, the lutites of the Fm. Rodanas could come from source areas where the maphic material represented about the 15% of the constituents, while in the more recent formations (Bolloncillos Fm. and Hoya Fm.) the proportion increases up to the 25%.

  4. Primary source areas of the siliciclastic materials from the upper Devonian formations are located to the Northeast and are part of a crystalline basement and quartz-rich sedimentary cover units (the Ebro Massif). It seems probable that the quartz grains were second-cycle grains derived from sedimentary rocks which could have lost their inherited quartz overgrowths by abrasion during transport.

  5. In this way, all the arenites studied are coastal sediments derived from quartz-rich sources. The most likely candidate to explain the high maturity of the studied arenites is a climatic influence. Thereby, the latitudinal position of the present Iberian can thus be estimated only roughly as intermediate between the rather warm or cold temperature of high latitudes (ca. 50ºS) of the latest Ordovician times, and the warmer temperatures of the subtropical latitudes (ca. 35ºS) of the Devonian, with a high precipitation regime and high mean-annual temperatures.

Supplementary materials

 

Supplementary information is available in the online version of the paper.

ACKNOWLEDGMENTS

 

We would like to thank Dr. Juan Mandado (University of Zaragoza, Spain) for his help during the research. The authors fully acknowledge the financial support provided by the Department of Geological and Geotechnical Engineering of the UPV.

References

 

Amorosi, A. & Zuffa, G.G. (2011). Sand composition changes across key boundaries of siliciclastic and hybrid depositional sequences. Sedimentary Geology, 236: 153-163. https://doi.org/10.1016/j.sedgeo.2011.01.003

Amorosi, A.; Guidi, R.; Mas, R. & Falanga, E. (2012). Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context. International Journal of Earth Sciences, 101: 415-427. https://doi.org/10.1007/s00531-011-0675-x

Aparicio, A.; Brell, J.M.; García, R.; Tena, J.M. & Gómez, J. (1991). El metamorfismo de bajo grado en el Paleozoico del sector central de la Cordillera Ibérica. Boletín Geológico y Minero, 102: 735-747.

Arribas, J.; Alonso, A.; Mas, R.; Tortosa, A.; Rodas, M.; Barrenechea, J.F.; Alonso-Azcarate, J. & Artigas, R. (2003). Sandstone petrography of continental depositional sequences of an intraplate rift basin: Western Cameros Basin (North Spain). Journal of Sedimentary Research, 73: 309-327. https://doi.org/10.1306/082602730309

Arribas, J.; Ochoa, M.; Mas, R.; Arribas, M.E. & González-Acebrón, L. (2007). Sandstone petrofacies in the northwestern sector of the Iberian Basin. Journal of Iberian Geology, 33: 191-206.

Arribas, J.; González-Acebrón, L.; Omodeo-Salé, S. & Mas, R. (2014). The influence of the provenance of arenite on its diagenesis in the Cameros Rift Basin (Spain). In: Sediment Provenance Studies in Hydrocarbon Exploration and Production (Scott, R.A.; Smyth, H.R.; Morton, A.C. & Richardson, N., Eds.), Geological Society of London, Special Publication, 386: 63-73. https://doi.org/10.1144/SP386.12

Basu, A. (1985a). Influence of climate and relief on compositions of sands released at source areas. In: Provenance of Arenites (Zuffa, G.G., Ed.), Reidel, Dordrecht, 1-18. https://doi.org/10.1007/978-94-017-2809-6_1

Basu, A. (1985b). Reading provenance from detrital quartz. In: Provenance of Arenites (Zuffa, G.G., Ed.), Reidel, Dordrecht, 231-249. https://doi.org/10.1007/978-94-017-2809-6_11

Basu, A.; Young, S.W.; Suttner, L.J.; James, W.C. & Mack, G.H. (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 45: 873-882. https://doi.org/10.1306/212F6E6F-2B24-11D7-8648000102C1865D

Bauluz, B. (1997). Caracterización mineralógica y geoquímica de materiales detríticos precámbricos y paleozoicos de las Cadenas Ibéricas: evolución post-sedimentaria. Tesis Doctoral, Universidad de Zaragoza, 341 pp.

Bauluz, B.; Fernández-Nieto, C. & González López, J.M. (1998). Diagenesis-very low grade of clastic Cambrian and Ordovician sedimentary rocks from the Iberian range (Spain). Clay Minerals, 33: 373-393. https://doi.org/10.1180/claymin.1998.033.3.02

Bauluz, B.; Mayayo, M.J.; Fernández-Nieto, C. & González López, J.M. (2000). Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 168: 135-150. https://doi.org/10.1016/S0009-2541(00)00192-3

Bernet, M.; Kapoutsos, D. & Basset, K. (2007). Diagenesis and provenance of Silurian quartz arenites in south-eastern New York State. Sedimentary Geology, 201: 43-55. https://doi.org/10.1016/j.sedgeo.2007.04.006

Bescós, J.M. (1988). Estudio petrológico de las rocas fosfáticas y litologías asociadas del Silúrico-Devónico de la Depresión del río Cámaras (Zaragoza-Teruel). Tesina, Universidad de Zaragoza, 151 pp.

Bhatia, M.R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45: 97-113. https://doi.org/10.1016/0037-0738(85)90025-9

Bhatia, M.R. & Crook, K.A.W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basin. Contributions to Mineralogy and Petrology, 92: 181-193. https://doi.org/10.1007/BF00375292

Bjørkum, P.A. (1996). How important is pressure in causing dissolution of quartz in sandstones? Journal of Sedimentary Research, 66: 147-154. https://doi.org/10.1306/D42682DE-2B26-11D7-8648000102C1865D

Caja, M.A.; Marfil, R.; García, D.; Remacha, E.; Morad, S.; Mansurbeg, H.; Amorosi, A.; Martínez-Calvo, C. & Lahoz-Beltrá, R. (2010). Provenance of siliciclastic and hybrid turbiditic arenites of the Eocene Hecho Group, Spanish Pyrenees: implications for the tectonic evolution for a foreland basin. Basin Research, 22: 157-180. https://doi.org/10.1111/j.1365-2117.2009.00405.x

Carls, P. (1983). La zona Asturoccidental-Leonesa en Aragón y el Macizo del Ebro como continuación del Macizo Cantábrico. In: Libro Jubilar J. M. Ríos, I.G.M.E., 3, 11-32.

Carls, P. (1999), El Devónico de Celtiberia y sus fósiles. In: 25 años de Paleontología Aragonesa, Homenaje al Prof. Leandro Sequeiros (Gámez-Vintaned, J.A. & Liñán, E., Eds.) Memorias de las VI Jornadas Aragonesas de Paleontología, Ricla, 101-164.

Carls, P.; Gozalo, R.; Valenzuela-Ríos, J. I. & Truyols-Massoni, M. (2004). La sedimentación marina devónico-carbonífera. In: Geología de España (Vera, J. A., Ed. principal). Sociedad Geológica de España - Instituto Geológico y Minero, 475-479.

Carls, P. & Lages, R. (1983). Givetium und Ober-Devon in den östlichen Iberischen Ketten (Spanien). Zeitschrift der Deutschen Geologischen Gesellschaft, 134: 119-142. https://doi.org/10.1127/zdgg/134/1983/119

Carls, P. & Valenzuela-Ríos, J.I. (2002). Devonian-Carboniferous rocks from the Iberian Cordillera. Cuadernos del Museo Geominero, 1: 299-314.

Critelli, S. & Le Pera, E. (1994). Detrital modes and provenance of Miocene sandstones and modern sands of the Southern Apennines thrust-top basins, Italy. Journal of Sedimentary Research, 64: 824-835. https://doi.org/10.1306/D4267ED8-2B26-11D7-8648000102C1865D

Critelli, S.; Arribas, J.; Le Pera, E.; Tortosa, A.; Marsaglia, K.M. & Latter, K.K. (2003). The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, Southern Spain. Journal of Sedimentary Research, 73: 72-81. https://doi.org/10.1306/071002730072

De Celles, P.G. & Hertel, F. (1989). Petrology of fluvial sands from the Amazonian foreland basin, Peru and Bolivia. Geological Society of America Bulletin, 101: 1552-1562. https://doi.org/10.1130/0016-7606(1989)101<1552:POFSFT>2.3.CO;2

Dickinson, W.R.; Beard, S.L.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94: 222-235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2

Dojen, C.; Gozalo, R.; Carls, P. & Valenzuela, J. I. (2004). Early and Late Devonian ostracod faunas from the Iberian Chains (NE Spain). Revista Española de Micropaleontología, 36: 171-185.

Dumitru, T.A.; Ernst; W.G., Hourigan, J.K. & McLaughlin, R.J. (2015). Detrital zircon U-Pb reconnaissance of the Franciscan subduction complex in northwestern California. International Geology Review, 57: 767-800. https://doi.org/10.1080/00206814.2015.1008060

Galán, E., & Martín Vivaldi, J.L. (1973). Caolines españoles. Geología, mineralogía y génesis. Parte 1. Boletin de la Sociedad Española de Cerámica y Vidrío, 12: 79-80.

García-Alcalde, J. L.; Carls, P.; Pardo Alonso, M. V.; Sanz López, J.; Soto, F.; Truyols-Massoni, M. & Valenzuela-Ríos, J. I. (2002). Devonian. In: The Geology of Spain. (Gibbons, W. & Moreno, T., eds.), Geological Society, London, 67-91. https://doi.org/10.1144/GOSPP.6

Garzanti, E.; Vezzoli, G.; Andò, S. & Castiglioni, G. (2001). Petrology of riftedmargin sand (Red Sea and Gulf of Aden, Yemen). Journal of Geology, 109: 277-297. https://doi.org/10.1086/319973

Garzanti, E.; Andò, S.; Vezzoli, G. & Dell’Era, D. (2003). From rifted margins to foreland basins: investigating provenance and sediment dispersal across desert Arabia (Oman, U.A.E.). Journal of Sedimentary Research, 73: 572-588. https://doi.org/10.1306/101702730572

George, B.G. & Ray, J. (2021). Depositional history of the Mesoproterozoic Chhattisgarh Basin, central India: insights from geochemical provenance of siliciclastic sediments. International Geology Review, 63: 380-395. https://doi.org/10.1080/00206814.2020.1712557

Gimeno, M.J. (1999). Estudio del comportamiento geoquímico de las tierras raras en un sistema natural de aguas acidas (arroyo del Val-Bádenas). Tesis Doctoral, Universidad de Zaragoza, 503 pp.

González-Acebrón, L.; Arribas, J. & Mas, R. (2007). Provenance of fluvial sandstones at the start of late Jurassic-early Cretaceous rifting in the Cameros Basin (N. Spain). Sedimentary Geology, 202: 138-157. https://doi.org/10.1016/j.sedgeo.2007.05.008

González-Acebrón, L.; Arribas, J. & Mas, R. (2010). Sand provenance and implications for paleodrainage in a rifted basin: the Tera Group (N. Spain). Journal of Iberian Geology, 36: 179-184.

González-Acebrón, L.; Pérez-Garrido, C.; Mas, R.; Arribas, J. & Götze, J. (2017). Provenance signatures recorded in transgressive sandstones of the upper Cretaceous Iberian Seaway. Journal of Sedimentary Research, 87: 152-166. https://doi.org/10.2110/jsr.2017.4

Gozalo, R. (1986). La serie estratigráfica del Devónico Superior de la Sierra de Tabuenca (Cadena Ibérica Oriental). Resumenes de Tesina. Universidad de Zaragoza, Curso 83-84: 111-122.

Gozalo, R. (1990). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Tesis Universidad de Zaragoza, 297 pp.

Gozalo, R. (1994). Geología y Paleontología (ostrácodos) del Devónico Superior de Tabuenca (NE de la cadena Ibérica Oriental). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 6, 291 pp.

Gozalo, R. & Liñan, E. (1988). Los materiales hercínicos de la Cordillera Ibérica en el contexto del Macizo Ibérico. Estudios Geológicos, 44: 399-404. https://doi.org/10.3989/egeol.88445-6556

Gozalo, R.; Carls, P.; Valenzuela-Ríos, J.I. & Pardo Alonso, M.V. (2001). El Devónico Superior de Tabuenca (Provincia de Zaragoza). In: La Era Paleozoica. El desarrollo de la vida marina, Homenaje al Prof. Jaime Truyols (Gámez-Vintaned, J.A. & Liñán, E., Eds.), Memorias de las VII Jornadas Aragonesas de Paleontología, Ricla, 169-190.

Gozalo, R.; Valenzuela-Ríos, J.I.; Pardo Alonso, M.V.; Liao, J.-C. & Carls, P. (2017). Late Devonian in the Barranco del Molino (Tabuenca) Iberian Chains (NE Spain). Berichte des Institutes für Erdwissenschaften der Karl-Franzens-Universität, 23: 111-123.

Gutiérrez-Marco, J.C.; Sarmiento, G.N.; Robardet, M., Rábano, I. & Vanek, J. (2001). Upper Silurian fossils of Bohemian type from NW Spain and their palaeographical significance. Journal of the Czech Geological Society, 46: 161-172.

Herron, M.M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58: 820-829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

Ingersoll, R.V.; Bulard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D. & Sares, S.W. (1984). The effect of grain size on detrital modes: a text of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54: 103-116. https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D

Konstantinou, A.; Wirth, K.R.; Vervoort, J.D.; Malone, D.H.; Davidson, C. & Craddock, J.P. (2014). Provenance of Quartz Arenites of the Early Paleozoic Midcontinent Region, USA. The Journal of Geology, 122: 201-216. https://doi.org/10.1086/675327

Kwon, Y.I. & Boggs Jr., S. (2002). Provenance interpretation of Tertiary sandstones from the Cheju Basin (NE East China Sea): a comparison of conventional petrographic and scanning cathodoluminescence techniques. Sedimentary Geology, 152: 29-43. https://doi.org/10.1016/S0037-0738(01)00284-6

Marenssi, S.A.; Net, L.I. & Santillana, S.N. (2002). Provenance, environmental and paleogeographic controls on sandstone composition in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sedimentary Geology, 150: 301-321. https://doi.org/10.1016/S0037-0738(01)00201-9

McLennan, S.M.; Taylor, S.R. & Kroner, A. (1983) Geochemical evolution of Archean shales from South Africa I. The Swaziland and Pongola Supergroups. Precambriam Research, 22: 93-124. https://doi.org/10.1016/0301-9268(83)90060-8

McLennan, S.M. (1989) Rare earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. In: Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B.R. & McKay, G.A., Eds.), Mineral Society American: 169-200. https://doi.org/10.1515/9781501509032-010

Miall, A.D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Berlin, 582 pp.

Montesinos, J.R. & Gozalo, R. (1987). Schindewolfoceras y otras formas de ammonoideos en el Devónico Superior de la Cordillera Ibérica. Revista Española de Paleontología, 2, 27-32.

Montesinos, J.R., Truyols-Massoni, M. & Gozalo, R. (1990). Una aproximación al límite Frasniense-Fameniense en la Sierra de Tabuenca (NE de España). Revista Española de Paleontología, 5, 35-39.

Murali, A.V.; Parthasarathy, R.; Mahadevan, T.M. & Sankar Das, M. (1983). Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments - A case study on Indian zircons. Geochimica et Cosmochimica Acta, 47: 2047-2052. https://doi.org/10.1016/0016-7037(83)90220-X

Oliveira, J.T.; García-Alcalde, J.L.; Liñan, E. & Truyols-Massoni, J. (1986). The Famennian of the Iberian Peninsula. Annales de la Société Géologique de Belgique, 11: 159-174.

Pettijohn, F.J.; Potter, P.E. & Siever, R. (1987). Sand and sandstone (2nd edition). Springer-Verlag, New York, 553 pp. https://doi.org/10.1007/978-1-4612-1066-5

Robardet, M. & Gutiérrez-Marco, J.C. (2002). Silurian. In: Geology of Spain. (Gibbsons, W. & Moreno, T., Eds.), Geological Society of London, London, 51-66. https://doi.org/10.1144/GOSPP.5

Rollinson, H.R. (1998). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London, 352 pp.

Shukla, A.D.; George, B.G. & Ray, J. (2020). Evolution of the Proterozoic Vindhyan Basin, Rajasthan, India: insights from geochemical provenance of siliciclastic sediments. International Geology Review, 62: 153-167. https://doi.org/10.1080/00206814.2019.1594412

Sprunt, E.S. & Nur, A. (1979). Microcracking and healing in granites: New evidence from cathodoluminescence. Science, 205: 495-497. https://doi.org/10.1126/science.205.4405.495

Surpless, K.D. (2015). Geochemistry of the Great Valley Group: an integrated provenance record. International Geology Review, 57: 747-766. https://doi.org/10.1080/00206814.2014.923347

Taylor, S.R. & McLennan, S.M. (1985). The continental crust: its composition and evolution. Blackwell Science Ltd, Oxford, 328 pp.

Torrijo, F. J. (2003). Modelización genética de nódulos y concreciones en el Devónico superior de Tabuenca (Provincia de Zaragoza). Tesis Doctoral, Universidad de Zaragoza, 393 pp.

Torrijo, F.J.; Mandado, J.; Sanz, F.J.; Bona, M.E.; Acero, P. & Joven, R.B. (1998). Las concreciones de la Formación Alternancia de Rodanas: Geometría y geoquímica. Revista de la Academia de Ciencias de Zaragoza, 2ª Serie, 53: 331-341.

Torrijo, F.J.; Mandado, J.; Sanz, F.J., Bona, M.E. & Acero, P. (2000). Estimación de la profundidad de enterramiento y deformación compactacional asociada, existente durante el crecimiento de concreciones carbonatadas de la Fm. Rodanas, Tabuenca (Zaragoza). Geo-Temas, 1 (3), 303-306.

Torrijo, F.J.; Mandado, J.; Acero, P. & Bona, M.E. (2001). Modelización genética de concreciones carbonatadas: Aplicación al Devónico de Tabuenca (Cordillera Ibérica, España). Estudios Geológicos, 57: 115-127. https://doi.org/10.3989/egeol.01573-4131

Torrijo, F.J.; Mandado, J. & Bona, M.E. (2004a). Caracterización morfológica de los nódulos silíceos de la Fm. Hoya (Tabuenca, Zaragoza). Implicaciones genéticas. Geo-Temas, 6 (1): 121-123.

Torrijo, F.J.; Mandado, J. & Bona, M.E. (2004b). Estimación del tiempo de crecimiento de las concreciones de la Fm. Rodanas (Tabuenca, Zaragoza). Geo-Temas, 6 (1): 129-131.

Torrijo, F.J.; Mandado, J. & Bona, M.E. (2005). Modelización genética de nódulos silíceos: Aplicación al Devónico de Tabuenca (Cordillera Ibérica, España) I. Caracterización morfológica y composicional. Estudios Geológicos, 61: 9-23. https://doi.org/10.3989/egeol.05611-237

Tortosa, A.; Palomares, M. & Arribas, J. (1991). Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. In: Developments in Sedimentary Provenance Studies (Morton, A.C.; Todd, S.P. & Haughton, P.D.W. Eds.), Geological Society of London, Special Publication, 157: 47-54. https://doi.org/10.1144/GSL.SP.1991.057.01.05

Valenzuela, J.I.; Gozalo, R. & Pardo Alonso, M.V. (2002). Los conodontos frasnienses y el límite Frasniense/Fameniense en Tabuenca (provincia de Zaragoza), Cadenas Ibéricas (NE de España). Revista Española de Micropaleontología, 34: 289-302.

White, N.M.; Pringle, M.; Garzanti, E.; Bickle, M.; Najman, Y.; Chapman, H. & Friend, P. (2002). Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth and Planetary Science Letters, 195: 29-44. https://doi.org/10.1016/S0012-821X(01)00565-9

Worden, R.H. & Morad, S. (2000) Quartz cementation in oil field sandstones: a review of the key controversies. In: Quartz Cementation in Sandstones (Worden, R.H. & Morad, S., Eds.), IAS Special Publication, 29: 1-20. https://doi.org/10.1002/9781444304237.ch1

Wronkiewicz, D.J. & Condie, K.C. (1990). Geochemistry and mineralogy of sediments from the Vestersdorp and Transvaal Supergroup, South Africa: Cratonic evolution during the early Proterozoic. Geochimica et Cosmochimica Acta, 54: 343-354. https://doi.org/10.1016/0016-7037(90)90323-D

Young, S.W. (1976). Petrographic textures of detrital polycrystalline quartz as an aid in interpreting crystalline source rocks. Journal of Sedimentary Research, 46: 595-603. https://doi.org/10.1306/212F6FFA-2B24-11D7-8648000102C1865D

Zuffa, G.G. (1985) Optical analyses of arenites: influence of methodology on compositional results. In: Provenance of Arenites (Zuffa, G.G., Ed.), Reidel, Cosenza, 165-189. https://doi.org/10.1007/978-94-017-2809-6_8