Correlation of the Marsawdad Formation, Oman, Late Miocene (Turolian-Ventian), based on fossil avian eggshells

Correlación de la Formación Marsawdad, Omán, Mioceno Superior (Turoliense-Ventiense), basada en las de cáscaras fósiles de huevos avianos

Martin Pickford¹, Mohammed Al-Kindi², Mohammed Rajhi², Thuwaiba Al Marjibi², Farida Al Rawahi²

¹Centre de Recherche en Paléontologie – Paris (CR2P), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, CP 38, 8 rue Buffon, 75005 Paris, France. ORCID ID: https://orcid.org/0000-0002-9017-1107
²Earth Sciences Consultancy Centre, P.O. Box 979, P.C. 611, Muscat, Sultanate of Oman. ORCID ID: https://orcid.org/0000-0002-8456-158X, https://orcid.org/0000-0002-1811-2532, https://orcid.org/0000-0001-7843-1474, https://orcid.org/0000-0003-0187-0238
*Corresponding author: Martin.Pickford@mnhn.fr

ABSTRACT

The discovery of fossilised struthious eggshell fragments on outcrops of the Marsawdad Formation, Rub' Al-Khali, Oman, permits estimation of the age of the deposits, indicating correlation to the Late Miocene (Turolian-Ventian: Tortonian-Messinian) ca 8-7 Ma. The eggshells are described and are located within a revised biostratigraphy of the Cenozoic terrestrial deposits of the Arabian Peninsula.

Key Words: Struthionidae; Eggshells; Biostratigraphy; Oman; Cenozoic; Neogene.

RESUMEN

El descubrimiento de fragmentos de cáscaras de huevos de tipo avestruz en los afloramientos de la Formación Marsawdad, Rub’ Al-Khali, Omán, permite la estimación de la edad de los depósitos, correlacionada con el Mioceno Superior (Turoliense-Ventiense: Tortoniense-Messiniense) ca 8-7 Ma. Las cáscaras de huevo se describen y se sitúan en una bioestratigrafía revisada de los depósitos terrestres de la Península de Arabia.

Palabras clave: Struthionidae; Cáscaras de huevo; Bioestratigrafía; Omán; Cenozoico; Neogeno.

Recibido el 15 de febrero de 2023; Aceptado el 25 de junio de 2023; Publicado online el 25 de agosto de 2023

Copyright: ©2023 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Introduction

The correlations and geochronology of the diverse sedimentary units in the Arabian Peninsula have been the subject of debate ever since the first studies were undertaken in the 20th Century (Cavelier, 1975; Powers, 1968; Powers et al. 1966; Tleel, 1973; Simmons et al. 2007; Steinke et al. 1958; Ziegler, 2001). Due to the presence of hydrocarbons in many areas of the peninsula, the marine deposits in particular, have been extensively studied not only in surface exposures but also in drill logs (Sharland et al. 2004) but there are still some problematic issues concerning the correlations and ages of the deposits. For example, the Taqah unit (Oman) is considered by Sharland et al. (2004) to correlate to both the Chattian and to the Aquitanian, yet fossil mammals from the Taqah site indicate that it is late Rupelian in age (Figs 1, 2) (Crochet et al. 1990, 1992; Gheerbrant et al. 1993, 1995; Harrison, 2001; Pickford, 2015c; Pickford & Thomas, 1994; Pickford et al. 1994, 2014; Privé-Gill et al. 1993; Roger et al. 1992, 1993; Seiffert, 2006, 2007; Senut & Thomas, 1992, 1994; Sigé et al. 1994; Thomas & Gheerbrant, 1992; Thomas et al. 1982, 1988, 1989, 1999).

The aim of this contribution is to report on the fossil struthious eggshells from the Marsawdad Formation and to propose a correlation to the Geological Time Scale. This will help to stabilise part of the stratigraphy of the continental deposits of the Rub’ Al-Khali, Oman, which are curated at the Oman Natural History Museum, Muscat, under catalogue number ONHM-F-4779. Measurements were made with vernier calipers, and images were captured with a Sony Cybershot Camera, and treated with Photoshop Elements15 to enhance contrast and to clean the background. Comparisons were made with fossils from Namibia (Pickford, 2014), Kenya (Harris & Leakey, 2003), Tanzania (Harrison & Msuya, 2005; Pickford, 2014) and the United Arab Emirates (Bibi et al. 2006) as well as with specimens from Bou Hanifia (Algeria) (Arambourg, 1959).

The meanings of some of the Place Names mentioned in this paper are provided in Table 1.

Material and Methods

The fossils described in this paper comprise 17 eggshell fragments from locality 25.RAK, Rub’ Al-Khali, Oman, which are curated at the Oman Natural History Museum, Muscat, under catalogue number ONHM-F-4779. Measurements were made with vernier calipers, and images were captured with a Sony Cybershot Camera, and treated with Photoshop Elements15 to enhance contrast and to clean the background. Comparisons were made with fossils from Namibia (Pickford, 2014), Kenya (Harris & Leakey, 2003), Tanzania (Harrison & Msuya, 2005; Pickford, 2014) and the United Arab Emirates (Bibi et al. 2006) as well as with specimens from Bou Hanifia (Algeria) (Arambourg, 1959).

The meanings of some of the Place Names mentioned in this paper are provided in Table 1.
Table 1.— Meaning of Place Names mentioned in this paper (when known).

<table>
<thead>
<tr>
<th>Place Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad Dabtiyah</td>
<td>Administer</td>
</tr>
<tr>
<td>Ain Sala</td>
<td>Sala Spring</td>
</tr>
<tr>
<td>Al Hafrah</td>
<td>Hole / the Pit</td>
</tr>
<tr>
<td>Al Ruwais</td>
<td>The small head</td>
</tr>
<tr>
<td>Al Uruq</td>
<td>The veins</td>
</tr>
<tr>
<td>Al’Ayn</td>
<td>The Spring</td>
</tr>
<tr>
<td>Al-Jadidah</td>
<td>The New</td>
</tr>
<tr>
<td>An Nafud</td>
<td>Run out</td>
</tr>
<tr>
<td>Ar Rhyashia</td>
<td>Feather</td>
</tr>
<tr>
<td>Ar Rimal</td>
<td>The Sands</td>
</tr>
<tr>
<td>Arba</td>
<td>The fourth</td>
</tr>
<tr>
<td>Ashawq</td>
<td>Longings</td>
</tr>
<tr>
<td>As-Sarrar</td>
<td>Squeaky</td>
</tr>
<tr>
<td>Bani Ma’Aridh</td>
<td>A group of exhibitions or families</td>
</tr>
<tr>
<td>Barzaman</td>
<td>Ancient Plain</td>
</tr>
<tr>
<td>Baynumah</td>
<td>In between or clearly viewed (clearly visible, unobscured)</td>
</tr>
<tr>
<td>Dam</td>
<td>Dam</td>
</tr>
<tr>
<td>Dammam</td>
<td>House roof</td>
</tr>
<tr>
<td>Dawkah</td>
<td>Evil and rivalry</td>
</tr>
<tr>
<td>Ghaba</td>
<td>Forest</td>
</tr>
<tr>
<td>Ghubbarrah</td>
<td>Dust</td>
</tr>
<tr>
<td>Harrat Al-Ujayfah</td>
<td>Al-Ujayfah neighborhood</td>
</tr>
<tr>
<td>Hofuf</td>
<td>Blow (windy)</td>
</tr>
<tr>
<td>Jabal Mishra ash Shamali</td>
<td>North Mishra Mountain</td>
</tr>
<tr>
<td>Jabal Uray-Irah</td>
<td>Uray-Irah Mountain</td>
</tr>
<tr>
<td>Jiddat al Harasis</td>
<td>The Plain of Harasis</td>
</tr>
<tr>
<td>Khasfah</td>
<td>A substantial palm leaf envelope</td>
</tr>
<tr>
<td>Marsawdad</td>
<td>?Observed, ?Predestined</td>
</tr>
<tr>
<td>Montasar</td>
<td>Victor (Conqueror)</td>
</tr>
<tr>
<td>Muqshin</td>
<td>Peeled (Exposed)</td>
</tr>
<tr>
<td>Qa’Amiyat</td>
<td>Lists</td>
</tr>
<tr>
<td>Qitabit</td>
<td>Fasten, Tether (as in pull strings around camels or around poles)</td>
</tr>
<tr>
<td>Ramlat al Hawz</td>
<td>Al Hawz Sand</td>
</tr>
<tr>
<td>Ramlat ar Tabkha</td>
<td>Ar Tabkha sand</td>
</tr>
<tr>
<td>Ramlat Mashash</td>
<td>Soft ground sands</td>
</tr>
<tr>
<td>Ramlat Musah</td>
<td>Musah Sand dune</td>
</tr>
<tr>
<td>Ramlat Umm Daysis</td>
<td>Umm Daysis sand</td>
</tr>
<tr>
<td>Ramlat Yi La</td>
<td>Yi La sand</td>
</tr>
<tr>
<td>Rub’ Al-Khali</td>
<td>The Empty Quarter</td>
</tr>
<tr>
<td>Shigag</td>
<td>Interdune corridor or street (generally flat interdunal areas)</td>
</tr>
<tr>
<td>Shisr</td>
<td>Sew (Bunt)</td>
</tr>
<tr>
<td>Shuqqat Al Khalfat</td>
<td>The interdune corridor of Khalfat</td>
</tr>
<tr>
<td>Taqah</td>
<td>Energy (or a different meaning in the Shehri language)</td>
</tr>
<tr>
<td>Tayma</td>
<td>The wide land</td>
</tr>
<tr>
<td>Thablhoten</td>
<td>The Blue Tent (local rendering of the English name)</td>
</tr>
<tr>
<td>Ulla al-Qurun</td>
<td>On the horns</td>
</tr>
<tr>
<td>Umm Tina</td>
<td>Fig tree</td>
</tr>
<tr>
<td>Wadi Bin Khawtar</td>
<td>Abundant goodness wadi</td>
</tr>
<tr>
<td>Wadi Sabya</td>
<td>Wadi of low land and sands</td>
</tr>
</tbody>
</table>
acteristic late Middle Miocene faunal remains aged between 14 Ma and 12 Ma (Anonymous, 1975; Hamilton et al. 1978; López-Antoñanzas, 2004, 2009; Morales et al. 1987; Thomas, 1982, 1983, 1985; Thomas et al. 1978; Sen & Thomas, 1979; Whitmore, 1987) and the fossiliferous deposits thus correlate to the Serravallian. This inconsistency raises the possibility of a mis-correlation between the so-called Hofuf Formation in Qatar (Cavelier, 1975; Al-Saad et al. 2002) and the Hofuf Formation in its type area in Saudi Arabia (Thralls & Hassan, 1956; Sharland et al. 2004), or indicates that, as currently understood, it comprises a composite unit of two or more formations.

An overview of the available evidence concerning vertebrate palaeontology of the Arabian Peninsula reveals that there are diverse localities which have yielded fossils of terrestrial animals and plants, spanning the period from Late Eocene to Recent (with gaps) but none are yet known from the period spanning the Late Cretaceous to Bartonian (Figs 1, 2).

Several named formations of continental deposits in Oman (e.g. Barzaman Fm, Ghaba Fm, Roger et al. 1994) have not yielded fossils, so there is inherent some uncertainty about their ages. One such unit which previously yielded only charophyte zoogonia, is the Marsawdad Formation which crops out widely in the Rub Al-Khali, Oman (Chevrel et al. 1992; Platel & Berthiaux, 1992a, 1992b). This unit was correlated to the Late Miocene-Pliocene by the authors because, in its type area, it overlies the Dam Formation (Burdigalian) and the Montasar Formation (which overlies the Dam Formation), and underlies supposed Pliocene to Recent deposits. Elsewhere in the Rub’ Al-Khalī, the Marsawdad Formation overlies the Dammam Formation (Eocene) and Dawkah Formation (possibly Oligocene to Burdigalian). Chevrel et al. (1992) considered that the Marsawdad Formation may be equivalent in part to the Hofuf Formation of Saudi Arabia (Powers, 1968; Cavelier, 1975) but fossil mammals from several localities near the type area of the latter unit indicate that it is

Figure 1.— Sequence stratigraphy of Cenozoic rock units of the Arabian Peninsula. Chart modified and abbreviated from Sharland et al. (2004) with addition of localities (in red letters) that have yielded geochronologically informative terrestrial vertebrates. NB: The fossil vertebrates from Ghaba occur in a continental facies of the Dam Formation which locally underlies the unfossiliferous Ghaba Formation and the Barzaman Formation.
of Middle Miocene age, and thus substantially older than the Marsawdad sediments.

Geological setting Marsawdad Formation

The Marsawdad Formation crops out extensively in the Rub’ Al-Khali, Oman (and probably also in Saudi Arabia) with outcrops mapped in three of the 1:250,000 geological map sheets of Oman (Sheets, NE 40-01, NE 39-04 and NE 39-08; Chevrel et al. 1992; Platel & Berthiaux, 1992a, 1992b) (Fig. 3). The Marsawdad Formation (map symbol MPlms) is comprised of well-bedded sequences of reddish to yellowish clayey siltstone grading upwards to grey marly limestone and grey to brown micritic limestone with palaeosols. In several outcrops the surface exposures comprise tilted and folded beds (Fig. 4), probably resulting from dissolution of gypsiferous underlying strata accompanied by localised slumping, let-down structures and solution collapse (Le Blanc, 2009, figs 5.5 and 5.7).

Platel & Berthiaux (1992a) interpreted the depositional environment of the Marsawdad Formation as a ‘large continental basin surrounded by palustrine and, more rarely, lacustrine deposits, regularly en-
Figure 3.— Geological sketch map of the Al’Ayn (Muqshin) area, Oman, showing the discovery locus of the struthious eggshells and the local extent of the Marsawdad Formation. Map in left column is modified from Platel & Berthiaux (1992a). Map at right shows the extent of the Marsawdad Formation (orange) in the Omani part of the Rub’ Al-Khali and the Baynunah Formation in the United Arab Emirates, 500 km to the north.

Figure 4.— Locality 25.RAK one of the many outcrops of tilted and folded beds of the Marsawdad Formation in the Rub’Al-Khali, Oman. Map modified from Google Earth.
Correlation of the Marsawdad Formation, Oman, Late Miocene (Turolian-Ventian), based on fossil avian eggshells

The only fossils previously recorded from the Marsawdad Formation are charophyte oogonia (Platel & Berthiaux, 1992a) and two eggshell fragments that were collected from deflated surfaces of the formation by Rosén et al. (2021).

Avian eggshell biochronology of Afro-Arabia

Research in Namibia during the past three decades has led to the establishment of a biostratigraphic scale employing struthious eggshells (Figs 5, 9) (Pickford, 1998, 2014; Pickford & Dauphin, 1993; Pickford & Senut, 2000; Pickford et al. 1995; Ségalen et al. 2002; Senut, 2000; Senut & Pickford, 1995; Senut et al. 1994, 1998). The scale spans the entire Neogene Period, the ages of the eggshell morphotypes being based on mammal fossils found associated with the eggshells (Pickford, 2014). Studies on fossil struthious eggshells from other African countries (Kenya, Harris & Leakey, 2003; Tanzania, Harrison & Msuya, 2005; Algeria, Arambourg, 1959; Malawi, Stidham, 2004; South Africa, Stidham, 2008) and the Arabian Peninsula (United Arab Emirates, Bibi et al. 2006; Mikhailov & Zelenkov, 2020) which were also associated with fossil mammals, have confirmed the utility of the eggshells for biostratigraphic correlations (see Table 2 for references to the geology and palaeontology of the Late Miocene Baynunah Formation). We are therefore reasonably confident that the Marsawdad eggshells will yield a reliable age estimate of the deposits in which they were fossilised. Even though the preservation of the Marsawdad eggshells is not perfect, a few fragments that are lightly eroded are informative enough about surface structure to yield interesting data linking them to the genus *Diamantornis* rather than to the aepyornithoid type which also occurs in the Late Miocene deposits of the Arabian peninsula (Bibi et al. 2006).

Fossil eggshells from Oman

Struthious eggshell fragments from the Rub’ Al-Khali, Oman, were described by Al-Kindi et al. (2021) and Maiorano et al. (2020) and attributed to *Struthio camelus* and an extinct species (*Diamantornis laini* or *Struthio daberasensis*).

Other eggshell fragments were reported, but not described in detail, by Rosén et al. (2021) (see Table...
Table 2.— Fossiliferous Cenozoic terrestrial localities of the Arabian Peninsula and main references to them.

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>AGE</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maitan, Oman</td>
<td>Late Pleistocene-Holocene</td>
<td>Al-Kindi et al. 2021; Maiorano et al. 2020</td>
</tr>
<tr>
<td>Mahadir Summan, Bani Ma’Arith,</td>
<td>Recent</td>
<td>Lowe, 1933a, 1933b; Philby, 1933</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuwairif, Ain Sala, Ull al Qurun;</td>
<td>Pleistocene-Holocene</td>
<td>Lowe, 1933a, 1933b; Philby, 1933</td>
</tr>
<tr>
<td>Umm Tina, Qa’amiyat, Abu Sabbau,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Nafud, Saudi Arabia</td>
<td>Pleistocene</td>
<td>Breeze et al. 2017; Garrard & Harvey, 1981; Rosenberg et al. 2013; Schultz & Whitney, 1986; Scerri et al. 2015; Thomas et al. 1998</td>
</tr>
<tr>
<td>Al Ruwais, Qatar</td>
<td>Pleistocene</td>
<td>Pyenson et al. 2022</td>
</tr>
<tr>
<td>Marsawd, Oman</td>
<td>Late Miocene</td>
<td>Berthiaux et al. 1992; Chevrel et al. 1992; Platel & Berthiaux, 1992a, 1992b; This paper</td>
</tr>
<tr>
<td>Shuqqat Al Khalifat, Saudi Arabia</td>
<td>Possibly Late Miocene</td>
<td>Buffetaut, 2022; Lowe, 1933a, 1933b; Philby, 1933</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jabal Midra, Saudi Arabia</td>
<td>Middle Miocene</td>
<td>Hamilton et al. 1978; López-Antoñanzas, 2004; López-Antoñanzas & Sen, 2006</td>
</tr>
<tr>
<td>As-Sarrar, Saudi Arabia</td>
<td>Early Miocene</td>
<td>López-Antoñanzas, 2004; López-Antoñanzas & Sen, 2004; Pickford & Tsujikawa, 2010</td>
</tr>
<tr>
<td>Tayma, Saudi Arabia</td>
<td>Early Miocene</td>
<td>López-Antoñanzas, 2004; López-Antoñanzas & Sen, 2004; Pickford & Tsujikawa, 2010</td>
</tr>
<tr>
<td>Jabal Uray’arah, Saudi Arabia</td>
<td>Early Miocene</td>
<td>Gentry, 1987a</td>
</tr>
<tr>
<td>Ghaba, Oman</td>
<td>Early Miocene</td>
<td>Otero & Gayet, 2001; Pickford et al. 2021; Roger et al. 1994</td>
</tr>
<tr>
<td>Wadi Sabya, Saudi Arabia</td>
<td>Early Miocene or Oligocene</td>
<td>Madden et al. 1978</td>
</tr>
<tr>
<td>Ar Rhyashia, Yemen</td>
<td>Oligocene</td>
<td>Henrici & Baez, 2001</td>
</tr>
<tr>
<td>Harrat Al Ujayfa, Saudi Arabia</td>
<td>Oligocene</td>
<td>Zalmout et al. 2010</td>
</tr>
<tr>
<td>Aydim, Oman</td>
<td>Late Eocene</td>
<td>Al-Sayigh et al. 2008</td>
</tr>
</tbody>
</table>
Table 3.— Location and shell thickness of struthious eggshell fragments from the Rub’ Al-Khali, Oman, mentioned by Rosén et al. (2021).

<table>
<thead>
<tr>
<th>Sample N°</th>
<th>Latitude : Longitude</th>
<th>Shell thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OES3-2015</td>
<td>18°45.296’N : 52°47.815’E</td>
<td>--</td>
</tr>
<tr>
<td>OES4-2016</td>
<td>19°00.530’N : 53°21.991’E</td>
<td>1.7</td>
</tr>
<tr>
<td>1701-0004</td>
<td>18°45.097’N : 53°11.260’E</td>
<td>1.6</td>
</tr>
<tr>
<td>1702-0055</td>
<td>18°55.183’N : 53°21.216’E</td>
<td>3.0</td>
</tr>
<tr>
<td>1702-0131</td>
<td>18°58.151’N : 53°28.426’E</td>
<td>2.6</td>
</tr>
<tr>
<td>1702-0138</td>
<td>18°58.406’N : 53°28.394’E</td>
<td>1.5</td>
</tr>
<tr>
<td>19-0152</td>
<td>19°13.677’N : 53°34.338’E</td>
<td>1.6</td>
</tr>
<tr>
<td>19-0161</td>
<td>19°10.835’N : 53°31.481’E</td>
<td>1.8</td>
</tr>
<tr>
<td>19-0210</td>
<td>19°21.201’N : 53°50.093’E</td>
<td>1.6</td>
</tr>
</tbody>
</table>

3). The latter authors estimated the ages of several specimens using the 14C method. Six eggshells less than 1.8 mm thick that were attributed by them to *Struthio camelus syriacus* yielded Recent ages but two specimens (2.6 and 3.0 mm thick) attributed by them to *Struthio kakesiensis*? were beyond the range of the 14C method. They commented « Such thick shelled eggs are not attributable to modern Arabian ostrich (*Struthio camelus syriacus*), but rather to a larger form that became extinct at least 3 Ma ago, for example, *Struthio kakesiensis*? (Bibi et al. 2006) known from the Arabian Emirates ». Two comments arise from this interpretation: (1) Bibi et al. (2006) did not report the presence of *S. kakesiensis* in the UAE, the two ootaxa from the Baynunah Formation listed by them being *Diamantornis laini* and an aepyornithoid, (2) the estimate of 3 Ma is too young, the Baynunah Formation being correlated by Bibi et al. (2006) to the Late Miocene (7.4-6.5 Ma).

The fossil eggshells from locality 25.RAK range in colour from dark chocolate brown (15 fragments) to pale chocolate (2 fragments), like specimens from near Maitan (Al-Kindi et al. 2021) and from several localities in Saudi Arabia (Lowe, 1933b). The darker specimens are all more deeply sculpted than the paler specimens (Fig. 6). Sculpting affects primarily the outer surface of the shell fragments (Fig. 8), this surface being exposed to the air when the specimens erode out of the deposits in which they were originally fossilised. The preferential orientation of the eggshell fragments is due to the curvature of the shells, their most stable position in windy environments being convex upwards.

The sculpting of the surfaces of the eggshells is due to two processes, sand-blasting (minor) and dissolution due to frequent episodes of wetting by dew (repeated many times). By these slow processes, the eggshells can lose much of their thickness and while doing so tend to develop complex systems of smoothly polished ridges and basins which pattern the surface of the shells.

The ten better preserved eggshell fragments from locality 25.RAK range in thickness from 2.4 to 3.0 mm, whereas seven deeply sculpted specimens are only 2.0 to 2.2 mm thick, but they must in any case have originally been appreciably thicker than eggs of *Struthio camelus* (Figs 6-8). Thickness measurements of the 17 specimens are as follows: 3 specimens: 2.0 mm, 2 specimens: 2.1 mm, 2 specimens: 2.2 mm, 1 specimen: 2.4 mm, 1 specimen: 2.5 mm, 2 specimens: 2.6 mm, 2 specimens: 2.7 mm, 1 specimen: 2.8 mm, 2 specimens: 2.9 mm, 1 specimen: 3.0 mm.

Two of the 17 Marsawdad specimens are relatively unaffected by sand-blasting and dissolution by dew, so they provide reliable information about the surface texture of the shells. In both cases, there appear to be no pores on the outer surface, thereby resembling the large smooth surfaces that occur between the circular pore complexes in eggs of *Diamantornis laini* (Bibi et al. 2006; Pickford, 1998, 2014; Pickford & Senut, 2000; Pickford et al. 1995; Ségalen et al. 2002; Senut, 2000; Senut & Pickford, 1995; Senut et al. 1994, 1998). The larger of the two well-preserved Marsawdad fragments (Fig. 7) shows the edge of a depression on one side, which could represent the
Implications of fossil avian eggshells from the Arabian Peninsula

Over the past nine decades, fossil struthious eggshell fragments have been reported from a variety of localities in the Arabian Peninsula (Lowe, 1933a, 1933b; McClure, 1984; Bibi et al. 2006; Hofmann et al. 2018; Al-Kindi et al. 2021; Mairoano et al. 2018).

Figure 6.— ONHM-F-4779, fossil struthious eggshell fragments from site 25.RAK, where there are extensive exposures of the Marsawdad Formation, Oman.

Figure 7.— Inner and outer surfaces of ONHM-F-4779, a lightly eroded eggshell fragment of Diamantornis laini from site 25.RAK, Marsawdad Formation, Oman. The arrow shows the margin of a depression that could represent the edge of a circular pore complex.

Figure 8.— Outer surfaces of ONHM-F-4779, two deeply sculpted eggshell fragments of Diamantornis laini from site 25.RAK, Marsawdad Formation, Oman. The sculpting is probably due to a combination of sand blasting and dissolution by dew, repeated many times.
Correlation of the Marsawdad Formation, Oman, Late Miocene (Turolian-Ventian), based on fossil avian eggshells

The most common eggshell fragments reported from the peninsula belong to the extant ostrich, *Struthio camelus* (*Struthio syriacus* in Lowe, 1933a, 1933b). Specimens are known from the vicinity of Maitan, Oman (Al-Kindi et al. 2021), from various sites in Saudi Arabia (Lowe, 1933a, 1933b; McClure, 1976, 1978, 1984) (Table 2) as well as generally over much of the peninsula (Boug & Islam, 2018). These eggshells are thin (less than 2 mm) and generally show the pore arrangement typical of the extant ostrich. Near Maitan, such eggshells were exploited by Neolithic societies to fabricate beads (Al-Kindi et al. 2021).

A single fragment of an oospecies with a shell thickness of 2.6 mm (probably of *Diamantornis laini* but could belong to *Struthio daberasensis*) was found near Maitan, Oman (Al-Kindi et al. 2021; Maiorano et al. 2020). The eggshells of *D. laini* from Namibia are considerably thicker than those of *S. camelus*, ranging in thickness from 2.4 - 3.0 mm. In addition,
the pores in eggs of *Diamantornis laini* are concentrated into circular slightly depressed pore complexes, with large expanses of smooth surfaces devoid of pores between the pore complexes, thereby differing from the eggs of aepyornithoids which have pores liberally scattered over the surface of the eggs (Bibi et al. 2006).

Restudy of the eggshell fragment (NHMUK A 2043) from Shuqat Al Khalfat, Saudi Arabia (near 21°57’13”N – 49°45’41”E) described by Lowe (1933a, 1933b) as suggested by Buffetaut (2022) was undertaken in March, 2023 (Fig. 10). It is 3.1 – 3.2 mm thick and the apparent lack of pores in the fragment suggests appurtenance to *D. laini*. On this basis the specimen indicates that the deposits from which it was collected are probably of Late Miocene age.

Arambourg (1959) described fossil struthious eggshell fragments from Bou Hanifia, Algeria, reporting that they range in thickness from 2.5 to 3.0 mm. Examination of the fossils housed in the Muséum National d’Histoire Naturelle, Paris (inventory n° 1951-9-295. Fig. 11) reveals that the outer surfaces appear to be devoid of pore structures, and they are thus similar to the surfaces between the circular pore pits of specimens of *Diamantornis laini*. Remeasurement of the specimens yielded the following data: - 1 specimen, 2.0 mm; 1 specimen, 2.1 mm; 3 specimens, 2.2 mm; 1 specimen 2.3 mm; 2 specimens, 2.4 mm; 2 specimens, 2.5 mm; 1 specimen, 2.6 mm; 1 specimen, 2.7 mm.

Recent reassessment of the Bou Hanifia mammals (Pickford & Chaïd-Saoudi, in prep.) suggests that they correlate best with the Late Turolian to Ventian, rather than to the Vallesian, and the fossil eggshells found in the same deposits accord with this reinterpretation of the age of the faunas. Thus Bou Hanifia and Marsawdad could be roughly contemporaneous.

Discussion and Conclusions

17 fossilised struthious eggshell fragments collected from exposures of the Marsawdad Formation,
Rub’ Al-Khali, Oman, are attributed to the oospecies *Diamantornis laini*, a form that spans the period 8-7 million years in Namibia (Pickford, 2014), Kenya (Harris & Leakey, 2003) and the United Arab Emirates (Bibi et al. 2006) (Fig. 12). On this basis, the Marsawdad Formation is considered to be of Late Miocene age, corresponding to the Turolian-Ventian ages of Europe (Morales et al. 2013). The geologists who mapped the formation (Chevrel et al. 1992; Platel & Berthiaux, 1992a, 1992b) correlated it to the Tortonian-Zanclean but it more likely correlates only to the Tortonian-Messinian.

The Marsawdad fossils provide a biostratigraphic anchor for the late Neogene sedimentary deposits of the Rub’ Al-Khali, and indicate that the Marsawdad Formation correlates to the Baynunah Formation which is widespread in the United Arab Emirates (Beech & Hellyer, 2005). The outcrop pattern of

![Figure 12](image-url)
Figure 12.— Distribution of late Miocene (MN12-MN13) fossil struthious eggshells in the Arabian Peninsula and Africa. Also shown is Venta del Moro, Spain, the type locality of the Ventian land mammal age (Morales et al. 2013).
the Marsawdad Formation in Oman reveals that the unit probably extends into Saudi Arabia to the north (in the vicinity of Thabhloten) and that surveys in that country may yield fossils of the same species. As such it is interesting to note that a fossil eggshell fragment from Shuqat Al-Khulat, Saudi Arabia, collected in 1932 (Lowe, 1933a, 1933b) (Fig. 10) likely belongs to *Diamantornis laini* which is also present in the Baynunah Formation which is equivalent in age to Marsawdad.

The two ootaxa from the Baynunah Formation were reinterpreted by Mikhailov & Zelenkov (2020) as representing *Diamantornis laini* and *Tsondabor- nis psammoides*. We agree with the identification of the former species, but the latter possibly requires further study because *Tsondabornis* has not been reported from any other deposits younger than ca 17 Ma (Pickford, 2014). However, the genus and species identification could be valid because the known eggshells of *Tsondabornis psammoides* range in thickness from 1.2 to 2.2 mm, whilst the fossil eggshells from the Baynunah Formation range in thickness from 1.65 to 2.29 mm (Bibi et al. 2006) implying a marked degree of overlap in the ranges of variation. Further comparisons are required but are not the focus of this paper.

An implication of the identification of eggshells of *Diamantornis laini* in the Marsawdad Formation implying an age of ca 8-7 Ma (Tortonian-Messinian: Turonian-Ventian) is that the underlying Montasar Formation could be of Middle Miocene age (possibly Serravallian) as it overlies the Early Miocene Dam Formation (Burdigalian). More detailed mapping and stratigraphy as well as palaeontological surveys are required to refine the stratigraphy.

ACKNOWLEDGEMENTS

The authors thank the Governor of the Wilayat of Muqshin for authorisation to carry out research in the Rub’ Al-Khali and for his logistic support. Thanks to Vincent Charpentier and Maria Pia Maiorano for administrative assistance. Nebeel Ahmad is thanked for logistic and administrative help. Petroleum Development Oman helped with funding for the field work. The first author thanks B. Senut, L. Victor, S. Crasquin, S. Colas and B. David for administrative help in France and J. Morales (Madrid) for support. Last but not least, we thank Gaillaume Billet (MNHN) and Mike Day (NHMUK) for providing access to fossils in their care.

References

Barry, J. C. (1999). Late Miocene carnivores from the Emirate of Abu Dhabi, United Arab Emirates. In P.
Correlation of the Marsawdad Formation, Oman, Late Miocene (Turolian-Ventian), based on fossil avian eggshells 15

Beech, M. J. (2005). The late Miocene fossil site at Ruwais. In M. J. Beech & P. Hellyer (Eds.), Abu Dhabi 8 million years ago: Late Miocene fossils from the western region (pp. 21-33). Abu Dhabi Islands Archaeological Survey.

Boug, A. & Islam, M. Z. (2018). Dating Saudi Arabian desert surface assemblages with Arabian ostrich Struthio camelus syriacus eggshell by 14C:

Correlation of the Marsawdad Formation, Oman, Late Miocene (Turolian-Ventian), based on fossil avian eggshells

Arabia: with Emphasis on the Late Miocene Faunas, Geology, and Paleoenvironments of the Emirate of Abu Dhabi, United Arab Emirates (pp. 271-289). Yale University Press.

