Estudios Geológicos 79 (2)
julio-diciembre 2023, e157
ISSN: 0367-0449, eISSN: 1988-3250
https://doi.org/10.3989/egeol.44935.628

Late Pleistocene to Middle Holocene paleoenvironmental changes based on diatom record in Salina del Bebedero (San Luis, Argentina)

Cambios paleoambientales desde el Pleistoceno tardío hasta el Holoceno medio basados en el registro de diatomeas en la Salina del Bebedero (San Luis, Argentina)

Vanesa B. Traverso

Fundación Mundo Marino, San Clemente del Tuyú (7105), Argentina.

https://orcid.org/0000-0002-8712-9602

Nora I. Maidana

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Diatomeas Continentales, (1428 Buenos Aires, Argentina.
CONICET- Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada - (IBBEA), Laboratorio de Diatomeas Continentales, Buenos Aires, Argentina.

https://orcid.org/0000-0002-1429-4834

Jorge O. Chiesa

Departamento de Geología (F.C.F.M.yN.-U.N.S.L.) Ejército de los Andes 950 (5700) San Luis.

https://orcid.org/0000-0001-5802-3561

ABSTRACT

This study analyzes the environmental changes that occurred in the western sector of the San Luis province (Argentina) during the Late Pleistocene to Middle Holocene period (approximately 12,600 to 3,600 years BP). The information provided by diatoms as paleobiological indicators is used for this analysis. We examined the lower 5 meters of the 10-meter-long SBIII core, which was recovered from the endorheic and hypersaline shallow lake known as Salina del Bebedero (33°20’S-66°45’W, 380 m a.s.l.).

The observed peaks of relative abundance of the planktonic diatom Cyclotella choctawhatcheeana suggest episodes of substantial water supply to the shallow lake from the Andes mountains via the Desaguadero river. These episodes were interspersed with periods of low water levels, resulting in very shallow to marsh environments characterized by the presence of epiphytic and benthic diatoms.

Furthermore, we discuss and integrate the inferred paleoenvironmental information obtained from the diatom records, along with data from other proxies such as pollen and sedimentology. This integration aims to enhance the previously developed paleoenvironmental model for the region, covering the period between approximately 12,600 and 3,600 years BP.

Overall, this research significantly contributes to the understanding of diatom assemblages in hypersaline lacustrine systems of the eastern Andes throughout the studied period, revealing the importance of certain taxa as indicators of wetter conditions during the early Holocene and in more recent stages within this timeframe. Additionally, this study aims to expand our existing knowledge of diatoms biodiversity in this province.

Keywords: 
Bacillariophyceae; hypersaline; shallow lake; palaeolimnology; bioproxy; Argentina; Late Quaternary
RESUMEN

Este trabajo aporta herramientas de análisis para la comprensión de los cambios ambientales ocurridos en el sector occidental de la provincia de San Luis (Argentina) entre el periodo del Pleistoceno tardío y el Holoceno medio (ca. 12.600 a ca. 3.600 años AP), utilizando la información provista por diatomeas, como indicadores paleobiológicos. Se analizó la mitad inferior del testigo SBIII (10 a 5 m) obtenido en la cuenca endorreica salino-lacustre Salina del Bebedero (33° 20′ S; 66° 45′ O; 380 (m s.n.m.).

Los picos de mayor abundancia relativa de la especie planctónica Cyclotella choctawhatcheeana sugieren episodios de gran aporte de agua a la laguna, procedente de la Cordillera de los Andes a través del río Desaguadero.

Estos episodios estuvieron intercalados por periodos con bajos niveles lacustres (ambientes someros o palustres) caracterizados por la presencia de diatomeas epifíticas y bentónicas y se identificaron intervalos donde no se encontraron diatomeas.

También discutimos y articulamos la información paleoambiental inferida para el período comprendido entre ca. 12.600 y 3.600 años AP, a partir de los registros de diatomeas, con la información disponible de otros proxies (polen y sedimentología), con el fin de mejorar el modelo paleoambiental generado previamente para la región.

Este trabajo amplía el conocimiento de ensambles de diatomeas en sistemas lacustres hipersalinos de los Andes orientales durante el periodo estudiado, revelando la importancia de algunos taxones como indicadores de condiciones más húmedas durante el inicio del Holoceno y en etapas más recientes dentro de este periodo y, además, este estudio, profundiza los conocimientos existentes sobre la biodiversidad diatomológica en esta provincia.

Palabras clave: 
Bacillariophyceae; laguna hipersalina; paleolimnología; paleobioindicador; Argentina; Cuaternario reciente

Recibido el 1 de enero de 2023; Aceptado el 6 de septiembre de 2023; Publicado online el 26 de octubre de 2023

Citation/Cómo citar este artículo: Traverso, V. B. et al. (2023). Late Pleistocene to Middle Holocene paleoenvironmental changes based on diatom record in Salina del Bebedero (San Luis, Argentina). Estudios Geológicos 79(2): e157. https://doi.org/10.3989/egeol.44935.628.

CONTENT

Introduction

 

Diatoms (Bacillariophyceae) are highly valuable indicators for paleolimnological studies due to their abundant and well-preserved siliceous cell covers (frustules) deposited in lacustrine sediments (Smol & Cumming, 2000Smol, J. P. & Cumming, B.F. (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology, 36, 986-1011. https://doi.org/10.1046/j.1529-8817.2000.00049.x ). Due to their short life cycle, diatoms are able to respond quickly to changes in their environment by using a wide range of adaptive strategies. The relationship between some groups of aquatic organisms, usually common in the lacustrine sediments, and the characteristics of their habitat have been quantified and used to characterize these environments. When reconstructing paleoenvironments using bioproxies, it is assumed that the ecological preferences of the species used as indicators have remained unchanged over time, at least from the Late Quaternary to the present (Birks, 2005Birks, H. J. (2005). Quantitative palaeoenvironmental reconstructions from Holocene biological data. In A. Mackay, R.W. Battarbee, H. J. B. Birks & F. Oldfield (Eds.), Global Change in the Holocene (pp. 107-123). Hokker Arnold, London.). Therefore, by examining the autoecological information of present-day species, valuable inferences can be made about past environments.

The understanding of Late Quaternary paleoenvironmental conditions in the central-western region of Argentina remains limited, mainly due to the scarcity of paleoecological and paleoclimatic archives with continuous records of high temporal resolution. The difficulty for finding this type of archives can be attributed to the arid and semi-arid conditions prevailing in the region, which show significant variability in the deposition rates of clastic materials in sedimentary environments. In addition, the development of a vegetation with a low cover and a low pollen production must be taken into account. (Paez et al., 2010Paez, M. M., Navarro, D., Rojo, L. D. & Guerci, A. (2010). Vegetación y paleoambientes durante el Holoceno. In M. Zárate, A. Gil y G. Neme (Eds.), Paleoambientes y ocupaciones humanas del centro-oeste de Argentina durante la transición Pleistoceno-Holoceno y Holoceno (pp. 175-212). Sociedad Argentina de Antropología. Capital Federal, Buenos Aires, Argentina.).

When studying the diatom phycoflora of a specific region, it is crucial to have access to specialized literature available to compare the specimens found with those described in specific works (Díaz Pardo et al., 2008Díaz Pardo, C. A., Echazú, D. M. & Maidana, N. I. (2008). Diatomeas continentales como indicadoras de cambios climáticos en Patagonia. In A. V. Volpedo, & L. Fernández Reyes (Eds.), Efecto de los cambios globales sobre la biodiversidas (pp. 233-246). RED CYTED 406RT0285. Buenos Aires.). As highlighted by Maidana and Seeligmann (2006)Maidana, N. I. & Seeligmann, C. (2006). Diatomeas (Bacillariophyceae) de ambientes acuáticos de altura de la provincia de Catamarca, (Argentina). Boletín de la Sociedad Argentina de Botánica, 41, 1-13., most of the research published in Argentina until the end of the 20th century relied on identifications using monographs predominantly focused on European flora, with a smaller proportion referring to North American species. Seeligmann and Maidana (2013)Seeligmann, C. & Maidana, N. I. (2013). ¿Existen especies de Navicula (Bacillariophyta) exclusivas de ambientes de alta montaña en Argentina?. Boletín de la Sociedad Argentina de Botánica, 48, 421-433. https://doi.org/10.31055/1851.2372.v48.n3-4.7544 further suggest that the high percentage of European and North American species reported in earlier works on diatoms from Argentina was likely the result of forcing the identifications to assign names of taxa known from the Northern Hemisphere. Only in the past two decades have several South American monographs been published (Metzeltin & Lange-Bertalot, 1998Metzeltin D. & Lange-Bertalot, H. (1998). Tropical diatoms of South America I, About 700 predominantly rarely known or new taxa representative of the neotropical flora. Iconographia Diatomologica, 5, 1-695., 2007Metzeltin D. & Lange-Bertalot, H. (2007). Tropical diatoms of South America II, Special remarks on biogeographic disjunction. Iconographia Diatomologic, 18, 1-877.; Metzeltin et al., 2005Metzeltin D., Lange-Bertalot, H. & García-Rodríguez, F. (2005). Diatoms of Uruguay; taxonomy-biogeography-diversity. Iconographia Diatomologica, 15, 1-736.). This limited knowledge of regional floras significantly hampers the identification of diatom species in the region.

Salina del Bebedero is a hypersaline endorheic basin located in the arid-semiarid region of central-western Argentina (Fig. 1). The basin’s bottom contains a sedimentary accumulation that spans at least the last ca. 20,000 14C years BP (González, 1994González, M. A. (1994). Salina del Bebedero Basin (República Argentina). In E. Gierlowski-Kordesch, & K. Kelts (Eds.), Global Geological Records of Lake Basins (pp. 381-386). Cambridge University Press, Cambridge.), and has garnered attention for its potential as a paleoenvironmental archive. The first paleoenvironmental studies took place in the final decades of the 20th century when paleoshore lines associated with former lake levels were identified (González, 1981González, M. A. (1981, September 20-26). Evidencias paleoclimáticas en la Salina del Bebedero (San Luis) [Conference presentation]. VIII Congreso Geológico Argentino, San Luis, Argentina, 411-438.). Within these basins, geological and micropaleontological studies have been carried out by Maidana (1994)Maidana, N. I. (1994). Fossil diatoms from Salina del Bebedero (San Luis), Argentina. Diatom Research 9, 99-119. https://doi.org/10.1080/0269249X.1994.9705290 , González & Maidana (1998)González, M. A. & Maidana, N. I. (1998). Post-Wisconsinian paleoenvironments at Salina del Bebedero basin San Luis, Argentina. Journal of Paleolimnology, 20, 353-368. https://doi.org/10.1023/A,1008016821250 , García (1999)García, A. (1999). Quaternary charophytes from Salina del Bebedero, Argentina, their relation with extant taxones and paleolimnological significance. Journal of Paleolimnology, 21, 307-323., and others. In these studies, samples from an exposed profile of the Bebedero stream, located near the saline area, were analysed (Fig. 1). Their strata can be correlated by considering the numerical ages and sediment characteristics, such as texture and color, the latter suggesting the dominant depositional environment. Those studies have helped to interpret the fluctuations in lake level as a consequence of variations in the fluvial input of meltwater originating from the Andes Mountain Range.

medium/medium-EGEOL-79-02-e157-gf1.png
Figure 1.  Geographic location and subenvironments of Salina del Bebedero, with the location of SBIII (study code) (Modified from González, 1994González, M. A. (1994). Salina del Bebedero Basin (República Argentina). In E. Gierlowski-Kordesch, & K. Kelts (Eds.), Global Geological Records of Lake Basins (pp. 381-386). Cambridge University Press, Cambridge. and Chiesa et al., 2015Chiesa, J., Ojeda, G. & Font, E. (2015). Geología de las cuencas de Desaguadero y Bebedero (Pleistoceno superior-Holoceno). San Luis, Argentina. Latin American Journal Sedimentology and basin analysis, 22(1), 13-28.).

In the 1990s, the Patagonian Lake Drilling Project (PATO), an international and multidisciplinary initiative, aimed to analyze the paleoclimatic records of extra-Andean lakes in Argentina. The project sought to improve our understanding of interhemispheric climate dynamics of climate changes in America on glacial-interglacial scales. As part of this project, four drillings were conducted in the saline depression (SBI to IV, Fig. 1). Initial results from core SB-IV, which included mineralogical analysis of sediments, pollen, and diatoms (González et al., 1998González, M. A., Maidana, N. I., Schäbitz, F. & Tognelli, G. (1998). Patagonian lake drilling transect, first results from Salina del Bebedero cores. EOS, Transactions of the American Geophysical Union, 79, F479.), indicated changes in water levels. However, precise chronological calibration was challenging due to the lack of accurate dates. The subsequent core examined (SB-III) spans the past 12,600 years (radiocarbon dates) and focused on pollen and carbon analysis (Rojo, 2003Rojo, L. D. (2003). Análisis palinológico-sedimentológico del Holoceno Superior de Salina del Bebedero (San Luis, Argentina), primeros resultados. Revista del Museo de Ciencias Naturales Bernardino Rivadavia Nueva Serie, 5, 285-289. https://doi.org/10.22179/REVMACN.5.59 ; Rojo et al., 2012Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 ).

In the context of understanding environmental changes in the area of San Luis, Argentina over the past 12,600 years BP, this study aims to provide analytical tools using diatoms as biological indicators. Additionally, it aims to deepen our existing knowledge of biodiversity in this region. The present paper qualitatively and quantitatively analyzes diatom assemblages recovered from the lower half of a sedimentary core obtained from the endorheic shallow lake Salina del Bebedero. It compares the dominant assemblages in each sample to infer the environmental evolution during the considered period.

Study Area

 

Salina del Bebedero is a saline-shallow lake situated within an endorheic basin consisting of a network of ephemeral tributaries (33°20’S-66°45’W, 380 m a.s.l.) located in the western sector of the San Luis province (Fig. 1). The lake receives water from the Desaguadero River, which flows into it through the Bebedero Stream (González, 1981González, M. A. (1981, September 20-26). Evidencias paleoclimáticas en la Salina del Bebedero (San Luis) [Conference presentation]. VIII Congreso Geológico Argentino, San Luis, Argentina, 411-438.). During the summer rainy season, the basin becomes flooded, reaching depths of approximately 20 cm. During the period of highest evaporation, the salts concentrate and precipitate within the depression. According to Deletang (1929)Deletang, L. F. (1929). La Salina del Bebedero y sus relaciones con el sistema hidrográfico Andino o del Desaguadero. Publicación de la Dirección General de Minas, Geología e Hidrología, 47. and Cordini (1962)Cordini, R. (1962). Salina del Bebedero, Pcia. de San Luis. Dirección Nacional de Geología y Minería. Carpeta N° 506. Buenos Aires. Inédito. sodium chloride (halite) is the predominant salt. The surface of the salt mirror covers an area of 72 km² and consists mainly of clastic sediments, including clay, silt, and fine sand (Chiesa et al., 2015Chiesa, J., Ojeda, G. & Font, E. (2015). Geología de las cuencas de Desaguadero y Bebedero (Pleistoceno superior-Holoceno). San Luis, Argentina. Latin American Journal Sedimentology and basin analysis, 22(1), 13-28.). Presently, the lake is exploited commercially for salt production.

The lake has a sub-circular shape and is surrounded by eolian sediments, such as mantles, dunes, and even loessial deposits (Fig. 1). Towards the east and south, there is a gradual transition from distal foothills to alluvial fine-grained materials and salts accumulations, with sodium chloride being predominant in the lacustrine sector. On the western and northern sides, fluvial processes are evident through the deposition of fine sands and gravels during the Late Pleistocene. In these areas, the lake features elevated and sloping margins, which have been interpreted as ancient shorelines formed during the Last Glacial Maximum (González, 1994González, M. A. (1994). Salina del Bebedero Basin (República Argentina). In E. Gierlowski-Kordesch, & K. Kelts (Eds.), Global Geological Records of Lake Basins (pp. 381-386). Cambridge University Press, Cambridge.). Despite fluctuations in lake level, the basin under study has consistently remained a saline environment throughout the period under study.

The region experiences a predominant semi-arid climate (Burgos & Vidal, 1951Burgos, J. J., & Vidal, A. L. (1951). Los climas de la República Argentina según la nueva clasificación de Thornwaite. Meteoros, 1, 1-32.), with an average annual temperature of 17.5 °C and an average annual precipitation of 738.5 mm (data from the San Luis meteorological station, 2000-2009 period, as reported by the National Meteorological Service). The area, influenced by the dynamic effects of the South Atlantic anticyclone (winds from the east or easterlies), is characterized by a subtropical climate (Prohaska, 1976Prohaska, F. (1976). The climate of Argentina, Paraguay and Uruguay. In W. Schwerdtfeger (Eds.), Climate of Central and South America (pp. 12,13-112). Elsevier, Amsterdam.). Precipitation ranges from approximately 800 mm y-1 in the eastern area, near the border between the provinces of San Luis and Córdoba, to less than 300 mm y-1 in the western area, adjacent to the province of Mendoza. In the study area, the average annual precipitation values for the second half of the last century (1950-2000) were 475 mm and 350 mm in the eastern and western areas, respectively.

The South American Arid Diagonal is a dry belt characterized by the lowest moisture contribution from both Atlantic and Pacific air masses (Bruniard, 1982Bruniard, E. D. (1982). La diagonal árida argentina, un límite climático real. Revista Geográfica, 95, 5-19.). It stretches northwest-southeast to the west of the lake. On the western side of this belt, humidity is mainly due to Pacific anticyclonic air masses and westerly winds from mid-latitudes. On the eastern side, humidity is influenced by air masses from the Atlantic Ocean, facilitated by the Chaco low-pressure system, which forms mainly during summer and allows moisture to enter from southern Brazil and Bolivia (Prohaska, 1976Prohaska, F. (1976). The climate of Argentina, Paraguay and Uruguay. In W. Schwerdtfeger (Eds.), Climate of Central and South America (pp. 12,13-112). Elsevier, Amsterdam.). As a result, Salina del Bebedero currently receives its moisture mainly from summer rainfall from the Atlantic Ocean.

However, during the Late Pleistocene and Holocene, the basin probably received contributions of Pacific water when the snow accumulated in the glaciers of the Cordillera de los Andes melted, and the runoff was collected by the Desaguadero-Salado fluvial system and the Bebedero Stream (González, 1994González, M. A. (1994). Salina del Bebedero Basin (República Argentina). In E. Gierlowski-Kordesch, & K. Kelts (Eds.), Global Geological Records of Lake Basins (pp. 381-386). Cambridge University Press, Cambridge.). At the present, this fluvial system is partially disconnected from the lake. Despite fluctuations in lake levels, the basin has remained saline throughout the Holocene.

Materials and Methods

 

The 10 m long SB-III core was extracted in 1998, as part of the PATO project (http://lrc.geo.umn.edu/PATO/index.html). It was extracted using a percussion drilling system, situated approximately 2 km from the northern edge of Salina del Bebedero shallow lake. Subsampling of the core was carried out at the Universidad Nacional de San Luis. The pollen and sedimentological analyses, as well as the radiocarbon dates, have already been published by Rojo (2003)Rojo, L. D. (2003). Análisis palinológico-sedimentológico del Holoceno Superior de Salina del Bebedero (San Luis, Argentina), primeros resultados. Revista del Museo de Ciencias Naturales Bernardino Rivadavia Nueva Serie, 5, 285-289. https://doi.org/10.22179/REVMACN.5.59 and Rojo et al. (2012)Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 .

In this study, we analyzed 43 subsamples obtained at intervals of approximately 8 cm from the lower half of the core (from 10 to 5 meters depth). These subsamples cover a chronological period between 12,600 and 3,600 years BP Rojo et al. (2012)Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 (Tab. 1).

Table 1.  Infrageneric taxa identifed along the lower 5 m of core SBIII
569 570 612 628 772 778 794 800 808 824 838 856 866 916
Amphora copulata (Kützing) Schoeman& Archibald 0,3 0,16 0,69 0,10 0,4 0,1 0,08 0,17 1,0 0,20
Caloneis westii (W. Smith) Hendey 0,5 0,05 0,29 0,3 0,16 0,2 0,11 1,2 0,5
Campylodiscus aff. bicostatus W. Smith 2,9 0,11 0,69 0,4 0,22 2,2 2,45
Cocconeis aff. euglypta (Ehrenberg) Van Heurck 0,8 0,98 2,78 0,20 82,65 5,9 0,44
Cocconeis sp. 0,06
Cyclotella choctawhatcheeana A.K.S. Prasad 53,1 89,62 24,31 0,20 35,88 91,0 90,4 0,0 82,3 86,07 87,47 76,7 51,12 70,7
Cymbella sp. 0,20
Denticula spp. 20,4 0,16 43,75 8,62 3,82 0,6 0,6 1,6 5,22 0,66 0,8 2,04 9,0
Diatomella balfouriana (Greville) W. Smith 1,38 0,1
Diploneis chilensis (Hustedt) Lange-Bertalot 0,3 0,7 3,4 3,91 2,65 5,6 3,07 3,6
D. smithii (Brébisson) Cleve 1894 var. smithii 0,1 0,50
D. smithii var. rhombica Mereschkowsky 0,69
Diploneis sp. 3,4 0,05 4,17 0,20 0,29 1,4 3,9 10,59 0,2 0,75 0,33 3,3 9,41 9,3
Encyonema sp. 0,05 0,10
Ephitemia spp. 1,6 0,27 3,47 0,71 0,59 0,1 0,9 1,55 0,2 0,25 1,99 0,4 23,52 0,8
Fragilaria sp1. 0,3 9,33
Fragilaria sp2. 0,69
Gyrosigma sp. 1,6 0,82 0,3 0,1 0,20 2,8
Halamphora atacamana (Patrick) Levkov 2,3
H. aff. coffeaformis Agardh 0,3
Halamphora sp. 0,59
Hatzschia amphyoxis (Ehrenberg) Grunow in Cleve &Grunow 0,5 0,38 0,59 0,1 0,2 0,50 0,06 0,20
Karayevia submarina (Hustedt) Bukhtiyarova 0,11 0,1
Luticola paramutica D. G Mann 0,27 0,29
Mastogloia atacamae Hustedt 0,44 0,2
M. braunii Grunow 5,0 1,37 1,39 0,30 0,29 5,7 1,6 0,25
M. aff. harrissonii Cholnoky 0,05 0,06
M. lanceolata Twaites 0,5 0,16 1,39 0,5
M. pumila (Grunow) Cleve 0,49
Mastogloia sp. 0,5 0,11 1,39 0,51 15,59 0,25
Melosira moniliformis Müll 0,3 3,01 1,49 5,3 3,07 0,5
Microcostatus sp. 7,00
Navicula aff radiosa Kutzing
Navicula aff. salinicola Hustedt 0,5 11,16 0,2
Navicula sp. 0,20 0,3 0,20
Navicymbula pusilla Krammer 1,39 0,20 0,11
Nitzschia aff. fonticola Grunow in Cleve & Moller. 1,09 39,15 0,1 0,0 3,48 0,5
N. hustedtiana Salah 5,3 0,38 4,86 0,20 0,24 2,1 0,50 0,6 0,20 1,8
N. aff. pusilla Grunow emend. Lange- Bertalot 0,59
N. aff. sigma (Kützing) W. Smith 0,30
N. sinuata (Thwaites) Grunow var. sinuata 0,3
Nitzschia sp1. 0,10
Nitzschia sp2. 19,78
Nitzschia sp3. 2,24
Nitzschia sp4. 0,41
Nitzschia sp5. 0,10
Nitzschia sp6. 0,29
Nitzschia sp7. 0,51
Pinnularia borealis Ehrenberg var. borealis 0,1 0,2
Pleurosigma sp. 0,05 5,56 0,10 0,29 1,5
Pseudostaurosira brevistriata (Grunow) Williams & Round 0,69 0,06 0,20
Rhopalodia gibberula (Ehrenberg) O. Müller 0,05 0,3
Staurosira venter (Ehrenberg) Cleve & J.D. Moller 0,17 0,41 0,3
Staurosirella pinnata (Ehrenberg) Hustedt 40,29
Staurosirella sp. 0,55 0,1 0,20
Surirella striatula Turpin 0,11 0,1 0,16 0,25 0,28 1,7 2,45
Tabullaria sp. 0,3 0,05 0,69 0,10 0,1 0,2 0,25 0,06 0,2 0,41 0,3
Ulnaria sp. 0,5 0,69
Taxones no identificados 1,1 0,11 0,69 0,41 0,29 0,08 0,50 0,17 0,41

The subsamples were processed using standard techniques for qualitative and quantitative diatom analysis, following the methods described by Battarbee (1986)Battarbee, R. W. (1986). Diatom analysis. In B. E., Berglund (Eds.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 527-50). J. Wiley and Sons Ltd. New York.. In this process, 1 gram of dry sediments from each subsample was oxidized with H2O2 (100 Vol.) at 80ºC to remove any organic matter residues that could interfere with the accurate observation of the material. The resulting suspension was then neutralized through successive washes with distilled water, and permanent slides were prepared using Naphrax® (ni=1.73).

To identify the dominant assemblages in each subsample, relative abundances (%) were estimated by counting a minimum of 200 valves per slide. Diatom concentration was expressed as the number of valves per gram of dry sediment. The slides used in this study have been deposited in the collection of the Laboratorio de Diatomeas continentales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA).

The slides were observed with a Polyvar Reichert-Jung binocular light microscope (LM), with PlanApo 100X, NA 1.32 immersion objective, DIC optics, and a Canon EOS 600D digital automatic camera.

For the observation of very small specimens or those with diagnostic features that cannot be distinguished using a light microscope (LM), a Carl Zeiss SUPRA 40 scanning electron microscope was utilized. To prepare the samples for SEM analysis, a drop of the final cleaned suspension was allowed to dry on a metallic stub. The sample was then coated with a thin layer of gold at the Centro de Microscopias Avanzadas (CMA), Facultad de Ciencias Exactas y Naturales (UBA).

Valve counts from each slide were converted to percentages and plotted using Tilia v1.7.16 software (Grimm, 1991Grimm, E. C. (1991). TILIA Software [Computer software]. Illinois State Museum, Research and Collection Center, Springfield, USA). Only species with relative abundances greater than 3% in at least one sample were included in the plot. A dendrogram was constructed using CONISS (Constrained Incremental Sum of Squares program, Grimm, 2004Grimm, E. C. (2004). TILIA graph v. 2.0.2 [Computer software]. Illinois State Museum, Research and Collections Center, Springfield, USA.), grouping samples according to their similarity in the stratigraphic sequence with respect to the upper or lower sample. The identification of diatoms was mainly based on the monographs by Rumrich et al. (2000)Rumrich, U., Lange-Bertalot, H. & Rumrich, M. (2000). Diatoms of the Andes. From Venezuela to Patagonia/Tierra del Fuego and two additional contributions. In H. Lange-Bertalot (Eds.), Iconographia Diatomologica. Annotated Diatom Micrographs 9. Phytogeography-Diversity-Taxonomy (pp. 9,673). Koeltz Scientific Books, Königst. In Germany., Krammer & Lange-Bertalot (1986Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae 1. Teil, Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, 2 (1) (pp. 876). G. Fischer, Jena., 1988Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae 2. Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heying, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2 (2) (pp. 596). Fischer, Jena., 1991)Krammer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae 3. Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J Gerloff, H. Heying & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2 (3) (pp. 576). Fischer, Jena., Levkov (2009)Levkov, Z. (2009). Diatoms of the European Inland Waters and comparable habitats. Amphora sensu lato. In H. Lange-Bertalot (Eds.), Diatoms of Europe 5. A.R.G (pp. 916). Ganther Verlag., Levkov et al. (2013)Levkov, Z., MetzeltIn D. & Pavlov, A. (2013). Diatoms of the European inland waters and comparable habitats. Luticola and Luticolopsis. In H. Lange-Bertalot (Eds.), Diatoms of Europa 7 (pp. 698). Koeltz Scientific Books, Germany., as well as other specific works. Autoecological information for the identified taxa was obtained from the literature consulted for each species and from sources such as Van Dam et al. (1994)Van Dam, H., Mertens, A. & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117-133. https://doi.org/10.1007/BF02334251 and Lowe (1974)Lowe, L. R. (1974). Environmental requirements and pollution tolerance of freshwater diatoms. Bowling Green State University, Bowling Green, Ohio, 343., among others.

During the counting process, it was difficult to differentiate between species of Denticula Kützing and Epithemia Kützing because their frustules often appeared in girdle view. Therefore, they were only considered at the genus level in the analysis (Table 1).

Results

 

Out of the 43 subsamples analyzed, 29 were found to be sterile. In the remaining 14 subsamples, a total of 32 genera were identified, with 61 infrageneric taxa. However, due to poor preservation of the valves, 23 of these taxa could not be identified at the species level. Additionally, there were other valves that could not be recognized even at the genus level.

The sedimentological characteristics of the Salina del Bebedero III (SB III) drilling (Fig. 2) in the sequence spanning from 10 to 5 meters depth, generally show an alternation of clastic facies deposits (sands, silts, clays) and evaporites (carbonates, sulfates, chlorides). The studied sequence is clearly bounded by two numerical ages (Tab. 2) and represents lacustrine conditions during the lower and middle Holocene in the central-western region of the Western Depression, and its association with the Mid-Holocene Climatic Optimum event. From a stratigraphic point of view, it corresponds to the Arco del Desaguadero Formation and the Río Desaguadero Member (Chiesa et al., 2015Chiesa, J., Ojeda, G. & Font, E. (2015). Geología de las cuencas de Desaguadero y Bebedero (Pleistoceno superior-Holoceno). San Luis, Argentina. Latin American Journal Sedimentology and basin analysis, 22(1), 13-28.).

medium/medium-EGEOL-79-02-e157-gf2.png
Figure 2.  Stratigraphic column.
Table 2.  Radiocarbon numerical ages (Taken from Rojo et al., 2012Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 ).
Sequence Radiocarbon age (years 14C AP) Calibrated radiocarbon age (cal AP) with 2 sigma Median (cal AP) d13C (‰) Depth (m) Dated Material /Technique Lab number
SBIII 3444 ± 54 (3476-3826)* 3633 -18,5 5,56 Sediment/AMS AA81414
10700 ± 170 (12103-13055)** 12603 -17,6 9,43 Sediment/AMS AA81413

* OxCal 4.1, SHCal 04; **OxCal 4.1, IntCal 09

As expressed by Rojo et al. (2012)Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 and Chiesa et al. (2015)Chiesa, J., Ojeda, G. & Font, E. (2015). Geología de las cuencas de Desaguadero y Bebedero (Pleistoceno superior-Holoceno). San Luis, Argentina. Latin American Journal Sedimentology and basin analysis, 22(1), 13-28., within this stratigraphic interval, there is a marked dominance of insoluble materials (clastics and carbonates) compared to soluble materials (sulfates and chlorides) (Table 3 and 4). This characteristic is noteworthy because in the basal and uppermost levels, the volume percentage of clastics ranges between 60% and 80%, while in the intermediate levels, the values of sulfates and chlorides slightly exceed 50%. Limited to the dimensions of the core, it is observed that the strata vary in thickness between 10 and 50 cm, and their dominant color is grayish-brown to yellowish-brown, while markedly saline levels appear white.

Table 3.  Percentage values (%) of the main sedimentary components
Material Sand Silt Clay Carbonates Sulfates Chlorides Clastics volume Precipitated volume
Depth 10 to 5 m 47 42 11 3 12 27 58 42
Table 4.  Percentage values (%) of the clastic components (Taken from Rojo et al., 2012Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 ).
Sedimentary Periods Depth (cm) Clay (0-3,9 µm) Silt (3,9-62,5 µm) Sand (62,5-2000 µm)
Core SB III 1.3 590 10,81 10,81 11,03 48,05 48,05 41,85 41,13 41,13 47,12
1.2 685 4,81 7,47 29,05 36,27 66,16 56,265
785 10,13 43,49 46,37
1.1 890 29,79 13,487 67,46 43,51 2,76 43
930 5,54 31,27 63,18
975 5,13 31,8 63,06

The values of clays, silts, and sands are expressed as percentages of the clastic fraction

The intense temporary summer rains also generate variability in the energy of these fluvial channels, as evidenced by the erosion of the basin slopes, the influx of sands, and the presence of fine gravels in the Pleistocene paleoshores.

The radioisotope ages, obtained in the core of the background (Rojo et al., 2012Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 ) enable us to propose a chronostratigraphic scale. Despite potential stratigraphic discontinuities, the deposition rate in the lacustrine environment is estimated to be approximately 0.8 mm per year.

Most of the observed specimens were poorly preserved, highly abraded and/or fragmented. In several cases, they could be assigned to a recognized genus, but identification to species level proved very difficult. The genera with the most complete valves were Cymbella, Encyonema, Diploneis, Cyclotella and Melosira, while those with more fragmented valves were Tabularia, Ulnaria, Surirella and Campylodiscus; in these cases, it was possible to identify the species

The absolute abundance of diatoms ranged between 68,600 and 14,800,000 valves gr-1 of dry sediment. Samples with less than 100,000 valves g-1 were considered unsuitable for paleoenvironmental inferences, (Bradbury, 1988Bradbury, J. P. (1988). Fossil diatoms and Neogene paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 299-316. https://doi.org/10.1016/0031-0182(88)90059-4 ).

Throughout the analyzed sequence, three peaks of absolute abundance were observed, coinciding with a higher frequency of Cyclotella choctawhatcheeana Prasad (Fig. 3). This species dominated in practically all the fertile samples, with a relative abundance of 70% or more, except in the sample at 800 cm depth where it was absent, as well as in the sample at 628 cm depth where it occurred at a very low frequency (2%). The first of these samples was dominated by Cocconeis aff. euglypta, possibly an epiphytic species. In the last sample, the dominant forms (Nitzschia aff. fonticola and Nitzschia sp2) could be considered benthic, as is the case with most species of the genus (Lowe, 2003Lowe, L. (2003). Keeled and canalled raphid diatoms In J. Wehr & R. Sheath (Eds.) Freshwater Algae of North America, Academic Press. Species (pp. 669-684). https://doi.org/10.1016/B978-012741550-5/50020-9 ).

medium/medium-EGEOL-79-02-e157-gf3.png
Figure 3.  Comparison of variations in absolute abundance (leaflets for gram of dry sediment) of diatom species with relative abundances greater than 3%. The gray zone represents sterile samples.

Most of the identified species have cosmopolitan distributions or have wide geographic ranges. For instance, Cyclotella choctawhatcheeana has been recorded in Croatia, Germany, the United States, Mexico, and Argentina (Prasad et al., 1990Prasad, A. K., Neinow, J. A. & Livingston, J. (1990). The genus Cyclotella (Bacillariophyta) in Choctawhatchee Bay, Florida, with special reference to C. striata and C. choctawhatcheeana sp. nov. Phycologia, 29, 418-436. https://doi.org/10.2216/i0031-8884-29-4-418.1 ; Maidana & Romero, 1995Maidana, N. I. & Romero, O. E. (1995). Diatoms from the hipersaline “La Amarga” lake. La Pampa, Argentina. Cryptogamie, Algologie, 16, 173-188.; Burić et al., 2007Burić, Z., Kiss, K., Ács, E., Viličić, D., Caput Mihalić, K., & Carić, M. (2007). The occurrence and ecology of the centric diatom Cyclotella choctawhatcheeana Prasad in a Croatian estuary. Nova Hedwigial, 84, 135-153. https://doi.org/10.1127/0029-5035/2007/0084-0135 ; Oliva et al., 2008Oliva, G., Lugo, A., Alcocer J. & Cantoral-Uriza, A. (2008). Morphological study of Cyclotella choctawhatcheeana Prasad (Stephanodiscaceae) from a saline Mexican lake. Saline Systems, 4, 1-9. https://doi.org/10.1186/1746-1448-4-17 ; Malešević et al., 2015Malešević, N., Ciglenečki, I., Bura-Nakić, E., Carić, M., Dupčić, I., Hrustić, E., Viličić D. & Ljubešić, Z. (2015). Diatoms in an Extreme Euxinic Environment (Rogoznica Lake, Eastern Adriatic Coast). Acta Botanica Croatica, 74, 333-43. https://doi.org/10.1515/botcro-2015-0031 , among others). Mastogloia lanceolata is mentioned in Europe, Africa, and Argentina, while Nitzschia hustedtiana is known in Africa, Israel, and Argentina. Almost all of the identified species have been previously reported in other aquatic environments in Argentina, with the exception of Karayevia submarina (Hustedt) Bukhtiyarova, which is known in Venezuela and Europe, Mastogloia harrisonii Cholnoky, previously mentioned only in South Africa, and Luticula paramutica Mann, mentioned in Europe, Israel, and the United States.

The most abundant species described in the sedimentary sequence are broadly tolerant to salinity (Tab. 1).

Only one of the identified species is planktonic (C. choctawhatcheeana), while the rest are mostly benthic (or presumably benthic), either perifitic, epiphytic or aerophytic.

Based on the results of the cluster analysis using the relative abundance of taxa present at > 3% in at least one sample (Tab. 1), the sedimentary sequence analyzed in core SB-III can be divided into six zones (Fig. 3):

  • Zone A (1000 cm to approximately 801 cm): Samples from 1000 to 920 cm, 906 to 876 cm, and 818 cm depth were sterile. The higher abundance of valves is found in the upper part of the zone. In the non-sterile samples, C. choctawhatcheeana predominates (45-85%), along with epiphytic species such as Epithemia, and benthic species like Diploneis chilensis, Diploneis sp.1, and Melosira moniliformis in a lower proportion. The absolute abundance is high in this zone (8,700,000 valves gr 1).

  • Zone B (800 cm): In this zone, the absolute abundance is low (1,300,000 valves gr-1). In the single fertile sample, C. choctawhatcheeana disappears, and Cocconeis aff. euglypta dominates (80%), likely an epiphytic species, along with smaller proportions of benthic forms such as Diploneis sp. and D. chilensis.

  • Zone C (approximately 799 cm to 638 cm): Samples located between 754 and 638 cm were sterile, with a peak of diatom abundance only in the first centimeters of the zone. C. choctawhatcheeana reappears as the dominant species (over 80% relative abundance), and, to a lesser extent, epiphytic forms like Mastogloia braunii, and benthic forms such as Diploneis chilensis and Diploneis sp. The absolute abundance increases again reaching 6,500,000 valves gr 1.

  • Zone D (approximately 638 cm to 613 cm): The absolute abundance in this sample is very low, 700,000 gr-1 valves of dry sediment. In the single fertile sample (628 cm), epiphytic forms dominate, such as Fragilaria sp. 1 (10%) and Denticula spp. (10%), along with benthic species like Nitzschia aff. fonticola (40%), Nitzschia sp. 2 (20%). Navicula aff. salinicola (10%) and Microcostatus sp. 2 (5%) occur in lower abundance, while C. choctawhatcheeana is present in very low proportions.

  • Zone E (612 cm): In this sample, Denticula spp. dominates (40%), followed by C. choctawhatcheeana (20%). Nitzschia hustedtiana and Pleurosigma sp. appear in low proportions (5%).

  • Zone F (approximately 611 cm to 502 cm): Samples from 611 to 581 cm and from 559 to 502 cm were sterile. From 580 to 560 cm, the importance of C. choctawhatcheeana (50 to 90%) increases, and in smaller proportions, Denticula spp. (20%) does so. These taxa show an inverse fluctuation: when C. choctawhatcheeana decreases, the proportion of Denticula spp. increases, and vice versa. The importance of Mastogloia braunii increases (6%), while Nitzschia hustedtiana remains consistent. In this area, the highest concentration of diatoms (14,600,000 valves gr-1) coincides with a peak of C. choctawhatcheeana (90%).

Discussion

 

The Late Quaternary sedimentary record in the province of San Luis, specifically in the Salina del Bebedero basin has received limited attention from a phycological perspective. This study represents the third contribution to the understanding of diatom phycoflora in this area. Maidana (1994)Maidana, N. I. (1994). Fossil diatoms from Salina del Bebedero (San Luis), Argentina. Diatom Research 9, 99-119. https://doi.org/10.1080/0269249X.1994.9705290 previously mentioned the diatom content in an exposed profile of Bebedero Stream, a tributary of the saline basin while Daruich & Martinez (2000)Daruich, J. & Martínez de Fabricius, A. L. (2000, December 1-2) Estudios preliminares de las comunidades algales de la cuenca del río Nogolí (Dep. Belgrano, Prov. San Luis, Argentina) [Conference Abstract]. XVII Reunión Argentina de Biología, 58. described algal communities in the Nogolí River basin.

In the analyzed samples, a total of 32 genera and 61 species were identified, of which 12 had not been previously recorded in the Salina del Bebedero area. Additionally, Diploneis chilensis, Halamphora atacamana, Karayevia submarina, Luticula paramutica, and Mastogloia harrisonii represent new mentions for Argentina.

In terms of geographic distribution, 21 of the identified species are considered cosmopolitan or have a wide distribution, while only 3 taxa are exclusive to South America. These are Mastogloia atacamae, Diploneis chilensis (found in Chile and Argentina), and Halamphora atacamana (found in Bolivia, Chile, and Argentina).

Some authors have noted that in these fossil assemblages from saline environments, valves may be partially dissolved or even absent from the stratigraphic record (Battarbee et al., 2005Battarbee, R. W., Mackady, A. W., Jewson, D. H., Ryves, D. B., & Sturm, M. (2005). Differential dissolution of Lake Baikal diatoms, Correction factors and implications for palaeoclimatic reconstruction. Global Planetary Change, 46, 75-86. https://doi.org/10.1016/j.gloplacha.2004.11.007 ) due to taphonomic processes that occur between the biocoenoses living in water and the thanatocoenoses preserved in sediments (Ryves et al., 2009Ryves, D., Jewson, D., Sturm, M., Battarbee, R., Flower, R., Mackay, A. & Granin N. (2003). Quantitative and qualitative relationships between planktonic diatom communities and diatom assemblages in sedimenting material and surface sediments in Lake Baikal, Siberia. Limnology and Oceanography, 48,1643-1661. https://doi.org/10.4319/lo.2003.48.4.1643 ).

The dominance of medium to fine-textured sands and mudstones (silt and clay) suggests the presence of a lacustrine body with continuous water input, mainly from the Desaguadero River in the south and the fluvial system of the San Luis River and the streams of the San Jerónimo-Balde ravine in the north.

The biota of extreme environments is exposed to climatic events that determine the characteristics of their waters. This usually leads to special adaptations (Sánchez Castillo et al., 1989Sánchez-Castillo, P., Cruz-Pizarro, L. & Carrillo, P. (1989). Caracterización del fitoplancton de las lagunas de alta montaña de Sierra Nevada (Granada, España) en relación a las características físico-químicas del medio. Limnética, 5, 37-50. https://doi.org/10.23818/limn.05.04 ) and it is common to find a high percentage of endemic species (Morales & Vis, 2007Morales, E. A. & Vis, M.L. (2007). Epilithic diatoms (Bacillariophyceae) from cloud forest and alpine streams in Bolivia, South America. Proceedings of the Academy of Natural Sciences of Philadelphia, 156, 123-155. https://doi.org/10.1635/0097-3157(2007)156[123,EDBFCF]2.0.CO;2 ). In the analyzed samples, we did not identify any species that could be considered endemic to the study area. Most of the species identified at the species level have been previously reported in other hypersaline environments in Argentina, such as Laguna La Amarga (Maidana & Romero, 1995Maidana, N. I. & Romero, O. E. (1995). Diatoms from the hipersaline “La Amarga” lake. La Pampa, Argentina. Cryptogamie, Algologie, 16, 173-188.), and in some shallow lakes of the high mountains of Northwestern Argentina (NOA) (Seeligmann & Maidana, 2003Seeligmann, C. & Maidana, N. I. (2003). Diatomeas (Bacillariophyceae) de Ambientes acuáticos de altura de la provincia de Catamarca (Argentina). Boletín de la Sociedad Argentina de Botánica, 38, 39-50.; Maidana & Seeligmann, 2006Maidana, N. I. & Seeligmann, C. (2006). Diatomeas (Bacillariophyceae) de ambientes acuáticos de altura de la provincia de Catamarca, (Argentina). Boletín de la Sociedad Argentina de Botánica, 41, 1-13., 2015Maidana, N. I. & Seeligmann, C. (2015). Diatomeas (Bacillariophyceae) en humedales de altura de la provincia de Catamarca, (Argentina). Boletín de la Sociedad Argentina de Botánica, 50, 447-466. https://doi.org/10.31055/1851.2372.v50.n4.12908 ; Seeligmann et al., 2008Seeligmann, C., Maidana, N. I, & Morales, M. (2008). Diatomeas (Bacillariophyceae) de humedales de altura de la provincia de Jujuy, Argentina. Boletín de la Sociedad Argentina de Botánica, 43, 1-17.; Maidana et al., 2009Maidana, N. I., Seeligmann, C. & Morales, M. (2009). Bacillariophyceae del complejo lagunar Vilama. (Jujuy, Argentina). Boletín de la Sociedad Argentina de Botánica, 44, 257-271., 2011Maidana, N. I., Seeligmann, C. & Morales, M. (2011). El género Navicula sensu stricto. (Bacillariophyceae) en humedales de altura de Jujuy, Argentina. Boletín de la Sociedad Argentina de Botánica, 46, 13-29.).

The western winds (westerlies) that come from the Pacific Ocean and reach Argentina are blocked by the Andes mountains, which act as a barrier. As these winds pass over the mountains, they cool down and release their moisture in the form of rain and snow. On the other side of the mountains, the descending winds are dry, resulting in arid and semi-arid environments (Minetti et al., 1982Minetti, J. L., Radicella, S. M., Menegazzo de García, & Sal Paz, J.C. (1982). La actividad anticiclónica y las precipitaciones en Chile y en la zona cordillerana central andina. Geofísica, 16, 145-157.). In contrast, the easterlies) are not blocked by mountain barriers and directly reach the continent, retaining the moisture they carry from the Atlantic Ocean. This leads to precipitation in the region in the form of rain or snow (González & Maidana, 1998González, M. A., Maidana, N. I., Schäbitz, F. & Tognelli, G. (1998). Patagonian lake drilling transect, first results from Salina del Bebedero cores. EOS, Transactions of the American Geophysical Union, 79, F479.).

In the SB-III core of Salina del Bebedero, the most abundant species observed was C. choctawhatcheeana, which exhibited three significant peaks of abundance (Fig. 3). This planktonic species is thought to enter the shallow lake from the Desaguadero River, through the Bebedero Stream, where it has been found to be abundant in plankton samples (Maidana, 1994Maidana, N. I. (1994). Fossil diatoms from Salina del Bebedero (San Luis), Argentina. Diatom Research 9, 99-119. https://doi.org/10.1080/0269249X.1994.9705290 ; González & Maidana, 1998González, M. A., Maidana, N. I., Schäbitz, F. & Tognelli, G. (1998). Patagonian lake drilling transect, first results from Salina del Bebedero cores. EOS, Transactions of the American Geophysical Union, 79, F479.). Therefore, the observed peaks in the sedimentary sequence can be attributed to an increase in water supply to the shallow lake, resulting from the melting of ice in the high mountains during spring and summer, as well as an increase in precipitation caused by the South Atlantic monsoon (Piovano et al., 2009Piovano, E. L, Ariztegui, D., Córdoba, F., Cioccale, M. & Sylvestre, F. (2009). Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. In F. Vimeux, F. Sylvestre & M. Khodri (Eds.), Past Climate Variability in South America and Surrounding Regions, from the Last Glacial Maximum to the Holocene, Developments in Paleoenvironmental Research (pp. 323-351), Springer Science. https://doi.org/10.1007/978-90-481-2672-9_14 ; Chiesa & Ojeda, 2021Chiesa, J. & Ojeda, G. (2021, October 27-30). El registro de horizontes edafizados en el Centro-Oeste de San Luis. Argentina. XVII Reunión Argentina de Sedimentología y VIII Congreso Latinoamericano de Sedimentología, R, 13. Paraná, Argentina.). Consequently, winters would have experienced very low temperatures and high humidity, leading to ice formation, while summers would have been warm enough to melt a significant amount of accumulated snow and ice (González & Maidana, 1998González, M. A., Maidana, N. I., Schäbitz, F. & Tognelli, G. (1998). Patagonian lake drilling transect, first results from Salina del Bebedero cores. EOS, Transactions of the American Geophysical Union, 79, F479.). The only fertile sample without C. choctawhatcheeana (800 cm) was dominated by Cocconeis aff. euglypta, presumably epiphytic.

The variations in the relative abundance of the planktonic centric diatom and its replacement by benthic and/or epiphytic species provide insights into changes in the lake level. These changes are closely related to increased runoff and flow in the fluvial system. These fluctuations in the fluvial system can be associated with climatic episodes characterized by higher humidity and temperatures.

A terminal moraine located in the upper basin of the Mendoza River valley has been dated to an age older than 15,000 years (Coronato & Rabassa, 2007Coronato, A. & Rabassa, J. (2007). Late Quaternary glaciations in South America. In S. Elias (Eds.), Encyclopedia of Quaternary Science Elsevier (pp. 1101-1108). Amsterdam. https://doi.org/10.1016/B0-44-452747-8/00129-0 ). Its development and subsequent thawing during the Late Pleistocene-Holocene transition, indicate the presence of cold climatic conditions and potentially high water levels in the fluvial and lacustrine systems (Chiesa et al., 2015Chiesa, J., Ojeda, G. & Font, E. (2015). Geología de las cuencas de Desaguadero y Bebedero (Pleistoceno superior-Holoceno). San Luis, Argentina. Latin American Journal Sedimentology and basin analysis, 22(1), 13-28.). These conditions were likely linked to the Mendoza and Desaguadero rivers, and thus with the Salina del Bebedero depression.

Obviously, during the Holocene the climate variability and the beginning of Present Interglacial in the surrounding plain or Andean piedmont (including the Desaguadero River basin) is recognized by the predominance of arid and semi-arid conditions. In Salina del Bebedero, evidenced by the retreat of the paleocoast of the lake and the deposition of wind-blown sediments (González, 1983González, M. A. (1983, August 15-17). Pleistocene and Holocene lake levels in the current Salina del Bebedero, Argentina. 14C dates. Relations with the latest pleistocene glaciation [Conference abstract]. INQUA-Symposium on Desert Encroachment, Fast Tropical Erosion, and Coastal Subsidence and Submergence, 88-89; González & Weiler, 1984González, M. A. & Weiler, N. E. (1984). Climatic changes in the mid- Holocene of Argentina [Conference presentation]. Actas de la Reunión Grupo Periglacial Argentino, 87-105). As a result, high modern lake levels could be influenced by the rainfall from the Atlantic Anticyclone (Piovano et al., 2009Piovano, E. L, Ariztegui, D., Córdoba, F., Cioccale, M. & Sylvestre, F. (2009). Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. In F. Vimeux, F. Sylvestre & M. Khodri (Eds.), Past Climate Variability in South America and Surrounding Regions, from the Last Glacial Maximum to the Holocene, Developments in Paleoenvironmental Research (pp. 323-351), Springer Science. https://doi.org/10.1007/978-90-481-2672-9_14 ), even though the influence of those Holocene neoglacial stages is possible (Wingenroth, 2012Wingenroth, M. (2012). Ecosistemas Presentes y Pasados en la Quebrada Benjamín Matienzo (32°35’-32°50’S/70°06’O), Cordillera de Los Andes, Mendoza, Argentina. Revista de la Asociación Geológica Argentina, 69, 436-456.).

Lower peak - 7.50 to 8.70 m - approximately 8,000 to 6,000 years BP - top of Zone A to base of Zone C.

The pronounced dominance of Cyclotella choctawhatcheeana observed between the top of Zone A and the base of Zone C (approximately 870 cm to 750 cm) can be linked to the warm phase of the Mid-Holocene (approximately 8,000 to 6,000 years ago). González (1981)González, M. A. (1981, September 20-26). Evidencias paleoclimáticas en la Salina del Bebedero (San Luis) [Conference presentation]. VIII Congreso Geológico Argentino, San Luis, Argentina, 411-438. suggests that the development of what this author calls the “Minor Lacustrine Period” is related to moisture provided by the Bebedero Stream and local rainfall. González and Maidana (1998)González, M. A. & Maidana, N. I. (1998). Post-Wisconsinian paleoenvironments at Salina del Bebedero basin San Luis, Argentina. Journal of Paleolimnology, 20, 353-368. https://doi.org/10.1023/A,1008016821250 argue that the relative abundance of other oligohalobous littoral diatoms found in Bebedero Stream profiles (e.g., Epithemia argus, Fragilaria brevistriata, F. construens) fluctuates inversely with Cyclotella choctawhatcheeana, thus linking them to the occurrence of local precipitation during warm and dry episodes with easterly winds. Various authors, such as Iriondo et al. (2009)Iriondo, M., Brunetto, E. & Kröhling, D. (2009). Historical climatic extremes as indicators for typical scenarios of Holocene climatic periods in the Pampean plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 283, 107-119. https://doi.org/10.1016/j.palaeo.2009.09.005 , Piovano et al. (2009)Piovano, E. L, Ariztegui, D., Córdoba, F., Cioccale, M. & Sylvestre, F. (2009). Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. In F. Vimeux, F. Sylvestre & M. Khodri (Eds.), Past Climate Variability in South America and Surrounding Regions, from the Last Glacial Maximum to the Holocene, Developments in Paleoenvironmental Research (pp. 323-351), Springer Science. https://doi.org/10.1007/978-90-481-2672-9_14 , Font & Chiesa (2015)Font, E. & Chiesa, J. (2015). Palaeoenvironmental and climatic reconstruction based on charophytes and sedimentology; can the mid-Holocene Climaticum be recognised?. Aquatic Botany, 120, 31-38. https://doi.org/10.1016/j.aquabot.2014.08.006 and Chiesa & Ojeda (2021)Chiesa, J. & Ojeda, G. (2021, October 27-30). El registro de horizontes edafizados en el Centro-Oeste de San Luis. Argentina. XVII Reunión Argentina de Sedimentología y VIII Congreso Latinoamericano de Sedimentología, R, 13. Paraná, Argentina., have analyzed geomorphological, sedimentological, and paleobiological evidence in the central-western region of San Luis, leading to regional implications regarding wet climatic conditions during the Mid-Holocene.

Upper peak - 5.50 to 6.20 m - at the top: 3,600 years BP - Zone E and middle section of Zone F.

On the other hand, the peak abundance of Cyclotella choctawhatcheeana found in Zone E and the middle section of Zone F (approximately 550 cm to 620 cm; 3,600 years BP) associates the underlying strata with the end of the event identified as the “Warm Optimum” of the Mid-Holocene. This humid climate condition has been found in Holocene deposits in the province of San Luis, both in the studied basin (Rojo et al., 2012Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416 ) and in the vicinity of the Sierra de San Luis (Strasser et al., 2014Strasser E., Gásquez J., Fernandez Turiel J., Marchevsky E., Osterrieth M., Prado J., Chiesa J. & Perino E. (2014). Inferencias paleoedafoclimáticas en el registro de sedimentación loéssica finipleistocénica-holocénica, en el piedemonte y pampa de altura de la sierra de San Luis (Argentina). In J.E. Marcovecchio, S.E. Botté & R.H. Freije (Eds.), Procesos geoquímicos superficiales en Iberoamérica (pp. 279-302). Red Iberoamericana de Física y Química Ambiental, España.; Facini et al., 2021Facini, J., Chiesa, J., Georgieff, S., Martinez, C. & Icazatti, F. (2021, October 27-30). Depósitos y procesos -sedimentarios del Pleistoceno-Holoceno en el Norte de la Sierra de San Luis. Argentina [Conference Abstract]. XVII Reunión Argentina de Sedimentología y VIII Congreso Latinoamericano de Sedimentología, Paraná, Argentina, 20) and the Conlara River fluvial system (Chiesa & Strasser, 2009Chiesa, J. & Strasser, E. (2009). Los depósitos cenozoicos en el área austral de la Depresión de Conlara, San Luis, Argentina. In J. Sayago & M. Collantes (Eds). Geomorfología y Cambio Climático (pp. 163-174). Instituto de Geociencias y Medio Ambiente, Tucumán.; Coria et al., 2022Coria, W., Chiesa, J., Font, E. & Duhalde, I. (2022, March 14-18). Características sedimentológicas y paleoambientales en el valle del Río Conlara (Pleistoceno tardío- Holoceno medio), San Luis, Argentina [Conference Abstract]. XXI Congreso Geológico Argentino, Puerto Madryn, Chubut, Argentina, 997-998), suggesting a significant influence of the South Atlantic Anticyclone during this period.

Conclusions

 

During this period, there were a series of lake level fluctuations, characterized by high and low events. The high lake level events, indicated by the dominance of C. choctawhatcheeana , are thought to correspond to glacial pulses in the Andes during the Last Glacial Maximum. These glacial pulses would have resulted in an increased water supply from the Desaguadero River to the shallow lake, flowing through the Bebedero Stream.

We suggest that the high climatic variability observed globally during the Holocene is also recorded in the deposits of the Salina del Bebedero basin as indicated by detailed analyses of microfossils such as diatoms, charophytes, and pollen, which are closely related to the sediment type corresponding to the depositional environment. The high levels in the shallow lake during the Late Pleistocene and the water level variations in the basin during the Holocene are mainly influenced by fluvial input from the Andean glaciers associated with the Desaguadero River and the Bebedero Stream. In addition, there may be a significant influence from rainfall originating from the east, associated with the South Atlantic Anticyclone and corresponding to wet periods. The vegetation changes observed in the Salina del Bebedero area during the transition from the Late Pleistocene to the Early Holocene are consistent with the evidence provided by lacustrine diatoms.

The periods of low lake level, characterized by the dominance of epiphytic or benthic forms, can be attributed to reduced fluvial input and seasonal rainfall. These conditions create shallow and vegetated aquatic environments. The phases of the lowest water levels in the shallow lake during the Holocene, characterized by the absence of diatoms, coincide with the periods of pronounced aridity that have been previously documented in this region.

Despite the fluctuations in water levels, most of the species identified throughout the study period are indicative of saline environments, which correspond to the current characteristics of this water body. However, further studies are needed to obtain a more accurate understanding of the paleoenvironmental evolution of the region. These studies should cover a larger area, include other aquatic environments, and use additional proxies to provide a comprehensive analysis.

ACKNOWLEDGEMENTS

 

I would like to acknowledge and give my warmest thanks to Dr. Edgardo N. Strasser and Lic. Franco Icazatti (Lab. Geoqca. and Suelos, FCFMyN, UNSL) for the processing of the sediments and to Dr. Johana A. Fernández for the charts and thorough reading.

References

 

Battarbee, R. W., Mackady, A. W., Jewson, D. H., Ryves, D. B., & Sturm, M. (2005). Differential dissolution of Lake Baikal diatoms, Correction factors and implications for palaeoclimatic reconstruction. Global Planetary Change, 46, 75-86. https://doi.org/10.1016/j.gloplacha.2004.11.007

Battarbee, R. W. (1986). Diatom analysis. In B. E., Berglund (Eds.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 527-50). J. Wiley and Sons Ltd. New York.

Birks, H. J. (2005). Quantitative palaeoenvironmental reconstructions from Holocene biological data. In A. Mackay, R.W. Battarbee, H. J. B. Birks & F. Oldfield (Eds.), Global Change in the Holocene (pp. 107-123). Hokker Arnold, London.

Bradbury, J. P. (1988). Fossil diatoms and Neogene paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 299-316. https://doi.org/10.1016/0031-0182(88)90059-4

Bruniard, E. D. (1982). La diagonal árida argentina, un límite climático real. Revista Geográfica, 95, 5-19.

Burgos, J. J., & Vidal, A. L. (1951). Los climas de la República Argentina según la nueva clasificación de Thornwaite. Meteoros, 1, 1-32.

Burić, Z., Kiss, K., Ács, E., Viličić, D., Caput Mihalić, K., & Carić, M. (2007). The occurrence and ecology of the centric diatom Cyclotella choctawhatcheeana Prasad in a Croatian estuary. Nova Hedwigial, 84, 135-153. https://doi.org/10.1127/0029-5035/2007/0084-0135

Chiesa, J. & Strasser, E. (2009). Los depósitos cenozoicos en el área austral de la Depresión de Conlara, San Luis, Argentina. In J. Sayago & M. Collantes (Eds). Geomorfología y Cambio Climático (pp. 163-174). Instituto de Geociencias y Medio Ambiente, Tucumán.

Chiesa, J. & Ojeda, G. (2021, October 27-30). El registro de horizontes edafizados en el Centro-Oeste de San Luis. Argentina. XVII Reunión Argentina de Sedimentología y VIII Congreso Latinoamericano de Sedimentología, R, 13. Paraná, Argentina.

Chiesa, J., Ojeda, G. & Font, E. (2015). Geología de las cuencas de Desaguadero y Bebedero (Pleistoceno superior-Holoceno). San Luis, Argentina. Latin American Journal Sedimentology and basin analysis, 22(1), 13-28.

Cordini, R. (1962). Salina del Bebedero, Pcia. de San Luis. Dirección Nacional de Geología y Minería. Carpeta N° 506. Buenos Aires. Inédito.

Coria, W., Chiesa, J., Font, E. & Duhalde, I. (2022, March 14-18). Características sedimentológicas y paleoambientales en el valle del Río Conlara (Pleistoceno tardío- Holoceno medio), San Luis, Argentina [Conference Abstract]. XXI Congreso Geológico Argentino, Puerto Madryn, Chubut, Argentina, 997-998

Coronato, A. & Rabassa, J. (2007). Late Quaternary glaciations in South America. In S. Elias (Eds.), Encyclopedia of Quaternary Science Elsevier (pp. 1101-1108). Amsterdam. https://doi.org/10.1016/B0-44-452747-8/00129-0

Daruich, J. & Martínez de Fabricius, A. L. (2000, December 1-2) Estudios preliminares de las comunidades algales de la cuenca del río Nogolí (Dep. Belgrano, Prov. San Luis, Argentina) [Conference Abstract]. XVII Reunión Argentina de Biología, 58.

Deletang, L. F. (1929). La Salina del Bebedero y sus relaciones con el sistema hidrográfico Andino o del Desaguadero. Publicación de la Dirección General de Minas, Geología e Hidrología, 47.

Díaz Pardo, C. A., Echazú, D. M. & Maidana, N. I. (2008). Diatomeas continentales como indicadoras de cambios climáticos en Patagonia. In A. V. Volpedo, & L. Fernández Reyes (Eds.), Efecto de los cambios globales sobre la biodiversidas (pp. 233-246). RED CYTED 406RT0285. Buenos Aires.

Facini, J., Chiesa, J., Georgieff, S., Martinez, C. & Icazatti, F. (2021, October 27-30). Depósitos y procesos -sedimentarios del Pleistoceno-Holoceno en el Norte de la Sierra de San Luis. Argentina [Conference Abstract]. XVII Reunión Argentina de Sedimentología y VIII Congreso Latinoamericano de Sedimentología, Paraná, Argentina, 20

Font, E. & Chiesa, J. (2015). Palaeoenvironmental and climatic reconstruction based on charophytes and sedimentology; can the mid-Holocene Climaticum be recognised?. Aquatic Botany, 120, 31-38. https://doi.org/10.1016/j.aquabot.2014.08.006

García, A. (1999). Quaternary charophytes from Salina del Bebedero, Argentina, their relation with extant taxones and paleolimnological significance. Journal of Paleolimnology, 21, 307-323.

González, M. A. & Maidana, N. I. (1998). Post-Wisconsinian paleoenvironments at Salina del Bebedero basin San Luis, Argentina. Journal of Paleolimnology, 20, 353-368. https://doi.org/10.1023/A,1008016821250

González, M. A. & Weiler, N. E. (1984). Climatic changes in the mid- Holocene of Argentina [Conference presentation]. Actas de la Reunión Grupo Periglacial Argentino, 87-105

González, M. A. (1981, September 20-26). Evidencias paleoclimáticas en la Salina del Bebedero (San Luis) [Conference presentation]. VIII Congreso Geológico Argentino, San Luis, Argentina, 411-438.

González, M. A. (1983, August 15-17). Pleistocene and Holocene lake levels in the current Salina del Bebedero, Argentina. 14C dates. Relations with the latest pleistocene glaciation [Conference abstract]. INQUA-Symposium on Desert Encroachment, Fast Tropical Erosion, and Coastal Subsidence and Submergence, 88-89

González, M. A. (1994). Salina del Bebedero Basin (República Argentina). In E. Gierlowski-Kordesch, & K. Kelts (Eds.), Global Geological Records of Lake Basins (pp. 381-386). Cambridge University Press, Cambridge.

González, M. A., Maidana, N. I., Schäbitz, F. & Tognelli, G. (1998). Patagonian lake drilling transect, first results from Salina del Bebedero cores. EOS, Transactions of the American Geophysical Union, 79, F479.

Grimm, E. C. (1991). TILIA Software [Computer software]. Illinois State Museum, Research and Collection Center, Springfield, USA

Grimm, E. C. (2004). TILIA graph v. 2.0.2 [Computer software]. Illinois State Museum, Research and Collections Center, Springfield, USA.

Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. https://doi.org/10.1002/joc.1276

Iriondo, M., Brunetto, E. & Kröhling, D. (2009). Historical climatic extremes as indicators for typical scenarios of Holocene climatic periods in the Pampean plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 283, 107-119. https://doi.org/10.1016/j.palaeo.2009.09.005

Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae 1. Teil, Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, 2 (1) (pp. 876). G. Fischer, Jena.

Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae 2. Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heying, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2 (2) (pp. 596). Fischer, Jena.

Krammer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae 3. Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J Gerloff, H. Heying & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2 (3) (pp. 576). Fischer, Jena.

Levkov, Z. (2009). Diatoms of the European Inland Waters and comparable habitats. Amphora sensu lato. In H. Lange-Bertalot (Eds.), Diatoms of Europe 5. A.R.G (pp. 916). Ganther Verlag.

Levkov, Z., MetzeltIn D. & Pavlov, A. (2013). Diatoms of the European inland waters and comparable habitats. Luticola and Luticolopsis. In H. Lange-Bertalot (Eds.), Diatoms of Europa 7 (pp. 698). Koeltz Scientific Books, Germany.

Lowe, L. R. (1974). Environmental requirements and pollution tolerance of freshwater diatoms. Bowling Green State University, Bowling Green, Ohio, 343.

Lowe, L. (2003). Keeled and canalled raphid diatoms In J. Wehr & R. Sheath (Eds.) Freshwater Algae of North America, Academic Press. Species (pp. 669-684). https://doi.org/10.1016/B978-012741550-5/50020-9

Maidana, N. I. & Seeligmann, C. (2006). Diatomeas (Bacillariophyceae) de ambientes acuáticos de altura de la provincia de Catamarca, (Argentina). Boletín de la Sociedad Argentina de Botánica, 41, 1-13.

Maidana, N. I. & Seeligmann, C. (2015). Diatomeas (Bacillariophyceae) en humedales de altura de la provincia de Catamarca, (Argentina). Boletín de la Sociedad Argentina de Botánica, 50, 447-466. https://doi.org/10.31055/1851.2372.v50.n4.12908

Maidana, N. I. & Romero, O. E. (1995). Diatoms from the hipersaline “La Amarga” lake. La Pampa, Argentina. Cryptogamie, Algologie, 16, 173-188.

Maidana, N. I. (1994). Fossil diatoms from Salina del Bebedero (San Luis), Argentina. Diatom Research 9, 99-119. https://doi.org/10.1080/0269249X.1994.9705290

Maidana, N. I., Seeligmann, C. & Morales, M. (2009). Bacillariophyceae del complejo lagunar Vilama. (Jujuy, Argentina). Boletín de la Sociedad Argentina de Botánica, 44, 257-271.

Maidana, N. I., Seeligmann, C. & Morales, M. (2011). El género Navicula sensu stricto. (Bacillariophyceae) en humedales de altura de Jujuy, Argentina. Boletín de la Sociedad Argentina de Botánica, 46, 13-29.

Malešević, N., Ciglenečki, I., Bura-Nakić, E., Carić, M., Dupčić, I., Hrustić, E., Viličić D. & Ljubešić, Z. (2015). Diatoms in an Extreme Euxinic Environment (Rogoznica Lake, Eastern Adriatic Coast). Acta Botanica Croatica, 74, 333-43. https://doi.org/10.1515/botcro-2015-0031

Metzeltin D. & Lange-Bertalot, H. (1998). Tropical diatoms of South America I, About 700 predominantly rarely known or new taxa representative of the neotropical flora. Iconographia Diatomologica, 5, 1-695.

Metzeltin D. & Lange-Bertalot, H. (2007). Tropical diatoms of South America II, Special remarks on biogeographic disjunction. Iconographia Diatomologic, 18, 1-877.

Metzeltin D., Lange-Bertalot, H. & García-Rodríguez, F. (2005). Diatoms of Uruguay; taxonomy-biogeography-diversity. Iconographia Diatomologica, 15, 1-736.

Minetti, J. L., Radicella, S. M., Menegazzo de García, & Sal Paz, J.C. (1982). La actividad anticiclónica y las precipitaciones en Chile y en la zona cordillerana central andina. Geofísica, 16, 145-157.

Morales, E. A. & Vis, M.L. (2007). Epilithic diatoms (Bacillariophyceae) from cloud forest and alpine streams in Bolivia, South America. Proceedings of the Academy of Natural Sciences of Philadelphia, 156, 123-155. https://doi.org/10.1635/0097-3157(2007)156[123,EDBFCF]2.0.CO;2

Oliva, G., Lugo, A., Alcocer J. & Cantoral-Uriza, A. (2008). Morphological study of Cyclotella choctawhatcheeana Prasad (Stephanodiscaceae) from a saline Mexican lake. Saline Systems, 4, 1-9. https://doi.org/10.1186/1746-1448-4-17

Paez, M. M., Navarro, D., Rojo, L. D. & Guerci, A. (2010). Vegetación y paleoambientes durante el Holoceno. In M. Zárate, A. Gil y G. Neme (Eds.), Paleoambientes y ocupaciones humanas del centro-oeste de Argentina durante la transición Pleistoceno-Holoceno y Holoceno (pp. 175-212). Sociedad Argentina de Antropología. Capital Federal, Buenos Aires, Argentina.

Piovano, E. L, Ariztegui, D., Córdoba, F., Cioccale, M. & Sylvestre, F. (2009). Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. In F. Vimeux, F. Sylvestre & M. Khodri (Eds.), Past Climate Variability in South America and Surrounding Regions, from the Last Glacial Maximum to the Holocene, Developments in Paleoenvironmental Research (pp. 323-351), Springer Science. https://doi.org/10.1007/978-90-481-2672-9_14

Prasad, A. K., Neinow, J. A. & Livingston, J. (1990). The genus Cyclotella (Bacillariophyta) in Choctawhatchee Bay, Florida, with special reference to C. striata and C. choctawhatcheeana sp. nov. Phycologia, 29, 418-436. https://doi.org/10.2216/i0031-8884-29-4-418.1

Prohaska, F. (1976). The climate of Argentina, Paraguay and Uruguay. In W. Schwerdtfeger (Eds.), Climate of Central and South America (pp. 12,13-112). Elsevier, Amsterdam.

Rojo, L. D. (2003). Análisis palinológico-sedimentológico del Holoceno Superior de Salina del Bebedero (San Luis, Argentina), primeros resultados. Revista del Museo de Ciencias Naturales Bernardino Rivadavia Nueva Serie, 5, 285-289. https://doi.org/10.22179/REVMACN.5.59

Rojo, L. D., Paez, M. M., Chiesa, J. O., Strasser, E. N. & Schäbitz, F. (2012). Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salina del Bebedero (San Luis, Argentina). Revista de la Asociación Paleontológica Argentina, 49, 427-441. https://doi.org/10.5710/AMGH.13.12.2011.416

Rumrich, U., Lange-Bertalot, H. & Rumrich, M. (2000). Diatoms of the Andes. From Venezuela to Patagonia/Tierra del Fuego and two additional contributions. In H. Lange-Bertalot (Eds.), Iconographia Diatomologica. Annotated Diatom Micrographs 9. Phytogeography-Diversity-Taxonomy (pp. 9,673). Koeltz Scientific Books, Königst. In Germany.

Ryves, D., Jewson, D., Sturm, M., Battarbee, R., Flower, R., Mackay, A. & Granin N. (2003). Quantitative and qualitative relationships between planktonic diatom communities and diatom assemblages in sedimenting material and surface sediments in Lake Baikal, Siberia. Limnology and Oceanography, 48,1643-1661. https://doi.org/10.4319/lo.2003.48.4.1643

Sánchez-Castillo, P., Cruz-Pizarro, L. & Carrillo, P. (1989). Caracterización del fitoplancton de las lagunas de alta montaña de Sierra Nevada (Granada, España) en relación a las características físico-químicas del medio. Limnética, 5, 37-50. https://doi.org/10.23818/limn.05.04

Seeligmann, C. & Maidana, N. I. (2003). Diatomeas (Bacillariophyceae) de Ambientes acuáticos de altura de la provincia de Catamarca (Argentina). Boletín de la Sociedad Argentina de Botánica, 38, 39-50.

Seeligmann, C. & Maidana, N. I. (2013). ¿Existen especies de Navicula (Bacillariophyta) exclusivas de ambientes de alta montaña en Argentina?. Boletín de la Sociedad Argentina de Botánica, 48, 421-433. https://doi.org/10.31055/1851.2372.v48.n3-4.7544

Seeligmann, C., Maidana, N. I, & Morales, M. (2008). Diatomeas (Bacillariophyceae) de humedales de altura de la provincia de Jujuy, Argentina. Boletín de la Sociedad Argentina de Botánica, 43, 1-17.

Smol, J. P. & Cumming, B.F. (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology, 36, 986-1011. https://doi.org/10.1046/j.1529-8817.2000.00049.x

Smol, J. P. (2014). Lakes and Climate Change a Paleoecological Perspective. In B. Freedman (Eds.), Global Environmental Change, Handbook of Global Environmental Pollution (pp. 231-241). Springer Dordrecht. https://doi.org/10.1007/978-94-007-5784-4_111

Strasser E., Gásquez J., Fernandez Turiel J., Marchevsky E., Osterrieth M., Prado J., Chiesa J. & Perino E. (2014). Inferencias paleoedafoclimáticas en el registro de sedimentación loéssica finipleistocénica-holocénica, en el piedemonte y pampa de altura de la sierra de San Luis (Argentina). In J.E. Marcovecchio, S.E. Botté & R.H. Freije (Eds.), Procesos geoquímicos superficiales en Iberoamérica (pp. 279-302). Red Iberoamericana de Física y Química Ambiental, España.

Van Dam, H., Mertens, A. & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117-133. https://doi.org/10.1007/BF02334251

Wingenroth, M. (2012). Ecosistemas Presentes y Pasados en la Quebrada Benjamín Matienzo (32°35’-32°50’S/70°06’O), Cordillera de Los Andes, Mendoza, Argentina. Revista de la Asociación Geológica Argentina, 69, 436-456.