The extinction of Equidae and Proboscidea in South America. A test using Carbon isotope data

Extinción de Equidae y Proboscidea en América del Sur. Un test usando datos de isótopos de carbono

J.L. Prado¹, M.T. Alberdi², B. Sánchez¹, G. Gómez²

ABSTRACT

Carbon isotopes, preserved in 166 samples of fossil teeth and bone, provide key data for understanding the ecology of extinct horses and gomphotheres during the Plio-Pleistocene in South America. To analyze the patterns of dietary partitioning throughout this time we divided the samples into 19 groups, taking into account the genus and the age of the corresponding localities. In this study, the diets of both groups are assessed to test extinction hypotheses. The strong resource partitioning among herbivores assumed under Co-evolutionary disequilibrium hypothesis is supported by isotopic data of horses from latest Pleistocene. *Hippidon* and *Equus* had very different diets. In contrast, species of gomphotheres from late Pleistocene in South America seem to have had less specialized diets containing a broad mix of both C_3 and C_4 plants, which is in line with the dietary assumptions of the mosaic-nutrient hypothesis, but does not support the assumptions of Co-evolutionary disequilibrium hypothesis.

Keywords: Late Pleistocene extinction, South America, Proboscidea, Perissodactyla, stable isotope.

RESUMEN

Los isótopos del carbono preservados en 166 muestras de dientes y huesos fósiles son un dato clave para entender la ecología de los de caballos y gonfoterios durante el Plio-Pleistoceno en América del Sur. Para analizar los cambios en las reconstrucciones de la dieta durante este lapso temporal hemos dividido las muestras en 19 grupos, teniendo en cuenta la sistemática y la cronología de cada localidad. En este estudio, las dietas de ambos grupos son evaluadas para probar las hipótesis sobre su extinción. El alto fraccionamiento en el uso de los recursos entre los herbívoros que asume la hipótesis del desequilibrio co-evolutivo es sustentada por los datos isotópicos de los caballos del Pleistoceno tardío. *Hippidion y Equus* tenían una dieta muy diferente. En contraste, las especies de gonfoterios de finales del Pleistoceno parecen tener una dieta menos especializada con una combinación de plantas C_3 y C_4 , que está en consonancia con los supuestos de la hipótesis del mosaico de nutrientes, pero no admite los supuestos de la hipótesis de desequilibrio Co-evolutivo.

Palabras clave: Extinciones del Pleistoceno tardío, América del Sur, Proboscidea, Perissodactyla, isótopos estables.

Introduction

Gomphothere and horse species arrived in South America during the Great American Biotic Interchange around 3 Ma (Webb, 1991). During this time, two main corridors developed in South America that shaped the biogeography of both groups (Alberdi *et al.*, 2011). The model with the greatest support of dispersal and diversification processes postulated seem to indicate that the small forms of both gomphotheres and horses (*Cuvieronius hyo-don, Equus andium, Equus insulatus* and *Hippidion*

¹ Museo Nacional de Ciencias Naturales, CSIC. José Gutiérrez Abascal, 2. 28006-Madrid (Spain).

Email: mcnsc2b@mncn.csic.es, malberdi@mncn.csic.es

² INCUAPA, Universidad Nacional del Centro. Del Valle 5737. B7400JWI Olavarría (Argentina).

 $^{{\}sf Email: jprado@soc.unicen.edu.ar, ggomez@soc.unicen.edu.ar}$

saldiasi) utilized the Andes corridor, whereas the large forms of these groups (*Stegomastodon waringi, Stegomastodon platensis, Equus neogeus and Hippidion principale*) utilized the Eastern route and some coastal areas. The route of each form seems to reflect an adaptive shift in their ecology (Alberdi & Prado, 1992; Sánchez *et al.*, 2004; Prado *et al.*, 2011).

Despite their wide distribution and abundance for most of the Pleistocene, gomphotheres and horses had disappeared from South America, along with many other large animals by the end of this epoch (Barnosky et al., 2004). Two types of theories have been offered for this extinction. One of these groups of theories attributes the extinction of large mammals to climatic and ecological changes, while the other holds human hunting activities responsible. Martin (1984) proposed that the extinction of large mammals from North America, South America and Australia is related to various, sudden impacts resulting from human activity. This "overkill" hypothesis is supported by the synchronism of extinction with the arrival of large numbers of humans to these continents. For North America, some authors (Haynes, 2002; Fiedel, 2009) argue that large mammals, especially mastodons and mammoths, were exterminated by Clovis hunters at c. 11 000 years BP. Conversely, the survival of megamammals and large mammals till c. 7000¹⁴C BP in South America indicate that extinctions would have occurred throughout an extended period (c. 6000-4000 ¹⁴C BP) considering the timing of human dispersal in the southern cone of South America (Steele & Politis, 2009). This situation does not provide any support for the Overkill and Blitzkried models in South America (Gutierrez & Martinez, 2008; Politis & Messineo, 2008; Borrero, 2009; Cione et al., 2009).

The archaeological record from South America shows that both gomphotheres and horses were present in Paleo-Indian sites (Borrero, 2008). Gomphotheres appear to have been a human food resource in two areas in central and southern Chile (Dillehay & Collins, 1988; Montane, 1968), and in Venezuela (Bryan *et al.*, 1978) they do not appear to have been important for human subsistence. However, bone dates suggest that in many regions of South America, gomphotheres were already gone when the first humans arrived and their continued presence in some areas, especially the Pampean region of Argentina and Uruguay (\approx 18.5 to \approx 22.2 kyr), suggests that these were relict populations (Alberdi & Prado, 2008; Alberdi et al., 2007, 2008; Gutiérrez et al., 2005; Prado & Alberdi, 2010). The case for horses is quite different. The archaeological record from South America shows that horses were common in paleoindian sites and some bone remains show cut-marks and helical fractures that indicate human processing (Mengoni Goñalons, 1983; Miotti & Salemme 1999). In fact, horses appear to have been a human food resource in Colombia (Correal Urrego, 1982), Venezuela (Bryan et al., 1978), Ecuador (Ficcarelli et al., 2003), Brazil (Guérin, 1991), central and southern Chile (Dillehay & Collins, 1988; Montane, 1968; Núñez et al., 1994) and southern Patagonia (Alberdi & Prieto, 2000; Alberdi et al., 2001; Bird, 1988; Borrero, 2003; Mengoni Goñalons, 1987; Martinic, 1992; Miotti & Salemme, 1999; Nami & Menegaz, 1991).

Authors who doubt the role of human hunting activities often attribute the extinctions to climatic and ecological changes, particularly to nutritional stress induced by rapid changes in plant communities. Climate may have provoked changes in communities of flora and as a result the diets of herbivores were altered, causing heightened periods of competition. Although gomphotheres and horses may have been able to adapt to any one of these environmental perturbations, the combination of all of them at the same time may have been devastating for species that showed more selective dietary adaptations. The "mosaic-nutrient hypothesis" argues that climate change reduced the growing season and local plant diversity, and also increased plant antiherbivore defenses, all of which reduced the carrying capacity of the environment for herbivores (Guthrie, 1984). A more general hypothesis (the coevolutionary disequilibrium hypothesis) was postulated by Graham & Lundelius (1984) who suggested that the high herbivore diversity of Pleistocene ecosystems was maintained by extensive resource partitioning, analogous to the grazing succession of modern African savannas, and that an extremely rapid glacial-interglacial transition reorganized floras, disrupting this tightly co-evolved system.

Dietary assumptions about Pleistocene herbivores being used in environmental hypotheses it can be tested with stable isotope data (Koch *et al.*, 1994). Isotopic analyses can reveal information about resource use and resource partitioning among species and is also able to determine diet and habitat use (Tütken & Vennemann, 2009; Feranec *et al.*, 2009). In this study, the diets of gomphotheres and horses from South America are assessed using carbon isotope analysis to test both hypotheses for extinction.

Isotopic paleoecology in South America

Previous studies have shown that the carbon isotope ratio (δ^{13} C) of fossil teeth and bones can be used to obtain dietary information about extinct herbivores (De Niro & Epstein, 1978; Vogel, 1978; Sullivan & Krueger, 1981; Lee-Thorp *et al.*, 1989, 1994; Koch *et al.*, 1990, 1994; Quade *et al.*, 1992; Cerling *et al.*, 1997; MacFadden, 2000a).

Stable carbon and oxygen isotopes are incorporated into the tooth and bone apatite of fossil specimen and are representative, respectively, of the food and water consumed while alive. The carbon isotope ratio is influenced by the type of plant material ingested, which is in turn influenced by the photosynthetic pathway utilized by the plants. During photosynthesis, C_3 plants in terrestrial ecosystems (trees, bushes, shrubs, forbs, and high altitude and high latitude grasses) discriminate more markedly against the heavy ¹³C isotope during fixation of CO₂ than C_4 plants (tropical grasses and sedges). Thus C_3 and C_4 plants have distinct δ^{13} C values. C₃ plants usually have δ^{13} C values of -30 per mil (‰) to -22‰, with an average of approximately -26%, whereas C₄ plants have δ^{13} C values of -14 to -10‰, with an average of about -12‰ (Smith & Epstein, 1971; Vogel et al., 1978; Ehleringer et al., 1986, 1991; Cerling et al., 1993). Animals incorporate carbon isotopes from food into their teeth and bone with an additional fractionation of ~12 to 14‰ (Cerling & Harris, 1999; Passey et al., 2005). Mammals feeding on C₃ plants characteristically have δ^{13} C values between -14 and -8‰, while animals that eat C₄ tropical grasses have δ^{13} C values between +2 and -2‰. A mixed-feeder would fall somewhere in between these two extremes (Lee-Thorp & van der Merwe, 1987; Quade et al., 1992). Hence, the relative proportions of C₃ and C₄ vegetation in the diet of an animal can be determined by analyzing the δ^{13} C value of its teeth and bones. A number of previous studies have used the carbon and oxygen isotopic abundance of fossils and paleosols from South America to reconstruct the diets of extinct herbivores and the paleoenvironmental parameters of ancient terrestrial communities and ecosystems (Latorre *et al.*, 1997; MacFadden, 2000a, 2005; MacFadden & Higgins, 2004; MacFadden et al., 1996; Sánchez et al., 2004).

Carbon isotopic data for horses from South America have been presented in several papers (MacFadden *et al.*, 1994; MacFadden & Shockey, 1997; MacFadden, 2000b; Sánchez *et al.*, 2006). MacFadden *et al.* (1999) interpreted the ancient distributions and latitudinal gradients of C_3 and C_4 grasses in North and South America from the stable isotopes preserved in the teeth of Pleistocene New World horses. In addition, some papers investigated the application of geochemical techniques in conjunction with morphological data to characterize and reconstruct the feeding ecology and niche characterization of individual species (MacFadden & Shockey, 1997; MacFadden, 1998).

Materials and methods

Here, we use stable carbon isotopes preserved in 166 fossil teeth and bone samples for 29 localities where horses have been recorded and 23 localities where gomphotheres have been recorded, published in Sánchez *et al.* (2004); MacFadden *et al.* (1994, 1996) and Prado *et al.* (in press). We have also included results previously published by Bocherens *et al.* (1996) for the modern elephant *Loxodonta africana* from the Amboseli Park (Kenya) to compare the dietary partitioning in the South American fossil taxa with that in an extant analogue (Table 1).

To analyze the patterns of dietary partitioning throughout the Plio-Pleistocene we divided the samples into 19 groups, taking into account the genera as well as the age of the corresponding localities. The nineteen groups are listed in Table 2: (Hi) *Hippidion*; (Eq) *Equus* (*Amerhippus*); (Cu) Cuvieronius; (St) Stegomastodon; (Hi1) Hippidion from the Late Pliocene; (Hi2) Hippidion from the Early-Middle Pleistocene; (Hi3) Hippidion from the Middle Pleistocene; (Hi4) *Hippidion* from the Late Pleistocene; (Hi5) Hippidion from the latest Pleistocene; (Eq2) Equus from the Early-Middle Pleistocene; (Eq3) Equus from the Middle Pleistocene; (Eq4) Equus from the Late Pleistocene; (Eq5) Equus from the latest Pleistocene; (Cu3) Cuvieronius from the Middle Pleistocene: (Cu4) Cuvieronius from the Late Pleistocene; (Cu5) Cuvieronius from the latest Pleistocene; (St2) Stegomastodon from the Early-Middle Pleistocene; (St4) Stegomastodon from the Late Pleistocene and (St5) Stegomastodon from the latest Pleistocene.

We performed both parametric (*t*-test) and nonparametric (Wilcoxon Signed-Rank) statistical Table 1.—Isotopic carbon values and descriptive statistics obtained from the enamel, dentine and bone of horse and gomphothere fossils from various South American localities. Results are given in ‰ versus PDB for carbon

Таха	Localities	Ages	Altitude	п	Mean δ ¹³ C (‰)PDB	SD (‰)	Min (‰)	Max (‰)
Hippidion	Tarija (Bo) Mina Aguilar (Ar) Uquía (Ar) Baroné (Ar)	middle Pleistocene latest Pleistocene late Ploicene	22S 23S 23S	5 2 4 2	-9,05 -9,90 -10,13 8,52	1,468 0,095 0,121	-10,8 -9,98 -10,26	-6,6 -9,79 -9,94 8 26
	Olivos(Ar)	early-middle Pleistocene	358	$\frac{2}{3}$	-0,52	0,155	-0,07	-8,50
	Buenos Aires (Ar)	early-middle Pleistocene	355	2	-11.55	1 350	-12.9	-10.2
	Luján (Ar)	latest Pleistocene	358	4	-11,30	0,519	-12,1	-10,6
	Rio Salado (Ar)	latest Pleistocene	36S	3	-10,10	1,586	-12,05	-8,16
	Arroyo Tapalqué (Ar)	latest Pleistocene	38S	4	-10,10	0,901	-11,6	-9,365
	Quequén Salado (Ar)	latest Pleistocene	38S	1	-8,08			
	U. Esperanza (Ch)	latest Pleistocene	528	1	-12,22			
Equus (Amerhippus)	La Venta (Co)	late Pleistocene	3N	2	-1,50	0,750	-2,2	-0,7
	Alangagi (Eg)	latast Plaistagana	0	4	-4,88	1,052	-5,8	-3,18
	Quebrada Colorada (Ec)	latest Pleistocene	25	3	-0,21	0,303	-0,87	-5,49
	Punín (Ec)	latest Pleistocene	2S	3	-7.24	1.855	-9.86	-5.77
	La Carolina (Ec)	latest Pleistocene	28 28	6	3.76	3.513	-1.45	9.21
	Salinas Oil Field (Ec)	latest Pleistocene	35	2	1,10	1,900	-0,8	3
	Talara Tar Pit (Perú)	latest Pleistocene	5S	1	2,10			
	Ourolandia (Br)	latest Pleistocene	12S	2	1,40	0,300	1,1	1,7
	Naupua (Bo)	latest Pleistocene	21S	2	0,11	0,095	0,01	0,2
	Tarija (Bo)	middle Pleistocene	22S	12	-4,08	1,648	-8,31	-2,3
	La Banda (Ar)	latest Pleistocene	285	1	-0,96			
	Buenos Aires (Ar)	early middle Pleistocene	323	2	-0,80	0.200	10.7	10.3
	Magdalena (Ar)	late Pleistocene	355	1	-10,50	0,200	-10,7	-10,5
	Luián (Ar)	latest Pleistocene	358	2	-11.43	0.230	-11.66	-11.2
	Cant.Vial Prov. (Ar)	late Pleistocene	35S	2	-9,48	1,978	-11,46	-7,51
	Arroyo Tapalqué (Ar)	latest Pleistocene	36S	2	-8,23	0,290	-8,52	-7,94
	Quequén Salado (Ar)	latest Pleistocene	38S	8	-8,69	0,863	-10,13	-7,8
	P. Hermengo (Ar)	late Pleistocene	38S	1	-7,21	0,327		
	Paso Otero (Ar)	latest Pleistocene	385	3	-10,62		-11	-10,2
	Centinela del Mar (Ar)	late Pleistocene	385	1	-9,99	0.201	11.20	10.4
<i>c</i> · ·			203	4	-10,81	0,391	-11,39	-10,4
Cuvieronius	Alangasi (Ec) Quabrada Calarada (Ea)	late Pleistocene	0	4	-8,60	0,923	-9,59	-7,38
	Quebrada Colorada (EC) Punín (Ec)	late Pleistocene	20	1	-7,52	1 606	0 71	5 1
	Illioma (Bo)	middle Pleistocene	185	1	-9.40	1,070	-9,71	-5,1
	Tarija (Bo)	middle Pleistocene	228	8	-7,22	1,879	-9,9	-4
	Limahuida (Ch)	late Pleistocene	32S	1	-11,30			
	El Parral (Ch)	late Pleistocene	36S	2	-12,30	0,250	-12,5	-12
	Rio Bueno (Ch)	late Pleistocene	40S	1	-13,10			
	Tralmahué (Ch)	late Pleistocene	40S	1	-13,90			
Stegomastodon	La Carolina (Ec)	latest Pleistocene	2S	4	-3,49	2,368	-5,97	-0,78
	Toca dos Ossos (Br)	late Pleistocene	15S	2	-6,60	1,600	-8,2	-5
	Tierras Blancas (Ch)	late Pleistocene	338	1	-12,10	0 (00	10.0	11.6
	Lagua-tagua (Ch)	latest Pleistocene	348	2	-12,20	0,600	-12,8	-11,6
	Elisellada (Af) La Plata (Ar)	early middle Pleistocene	343		-7,55	1 354	-7,57	-7,20
	Arrovo Pavón (Ar)	early-middle Pleistocene	348	1	-7.00	0.353	-9,00	-5,7
	Cant. Sr. Landa (Ar)	late Pleistocene	34S	3	-7,38	0,912	-8,05	-6,09
	Cant. Hdez. Orazi (Ar)	late Pleistocene	34S	4	-8,10	0,778	-9,08	-7,3
	Mercedes (Ar)	late Pleistocene	34S	2	-8,72	0,020	-8,74	-8,7
	Magdalena (Ar)	late Pleistocene	35s	6	-7,92		-8,26	-7,4
	Arroyo Tapalqué (Ar)	latest Pleistocene	36S	2	-8,64	0,380	-9,02	-8,26
	Ayacucho (Ar)	late Pleistocene	375	1	-9,56	0.000	10.11	0.60
• • • •	Quequen Grande (Ar)	latest Pleistocene	385	1	-10,/5	0,902	-12,11	-9,09
Loxodonta africana	Amboseli (K)	Recent	3S	6	-8,42	1,951	-10,7	-5,7

Groups	п	Mean δ ¹³ C (‰) PDB	SD (‰)	Min (‰)	Max (‰)
Hippidion	31	-10,11	1,39	-12,9	-6,6
Hippidion late Pliocene	4	-10,13	0,14	-10,26	-9,94
Hippidion early-middle Pleistocene	3	-10,56	1,03	-11,73	-9,79
Hippidion middle Pleistocene	5	-9,05	1,64	-10,8	-6,6
Hippidion late Pleistocene	2	-8,52	0,22	-8,67	-8,36
Hippidion latest Pleistocene	15	-10,39	1,33	-12,22	-8,08
Equus (Amerhippus)	68	-5,21	4,83	-11,66	9,21
Equus (A) early-middle Pleistocene	2	-10,50	0,28	-10,7	-10,3
Equus (A) middle Pleistocene	16	-4,28	1,61	-8,31	-2,3
Equus (A) late Pleistocene	7	-7,10	4,18	-11,46	-0,7
Equus (A) latest Pleistocene	43	-5,00	5,61	-11,66	9,21
Cuvieronius	30	-9,08	2,64	-13,9	-4
Stegomastodon	38	-7,98	2,28	-12,11	-0,78
Cuvieronius middle Pleistocene	9	-7,46	2,01	-9,9	-4
Cuvieronius late Pleistocene	19	-9,51	2,61	-13,9	-5,1
Cuvieronius latest Pleistocene	2	-12,20	0,85	-12,8	-11,6
Stegomastodon early-middle Pleistocene	7	-7,80	1,24	-9,06	-5,9
Stegomastodon late Pleistocene	18	-7,90	1,06	-9,56	-5
Stegomastodon latest Pleistocene	13	-8,19	3,68	-12,11	-0,78

Table 2.—Descriptive statistics for the 19 groups of horses and gomphotheres that were compared. *n*: number of samples. SD: standard deviation

Table 3.—Results of parametric (t-test) and non-parametric (Wilcoxon Signed-Rank) tests performed on 34 possible paired comparisons between the 19 groups of horses and gomphotheres. The definitions of the groups are the same as for table 2. *p*: significance level. Abbreviations in text

Comparison groups	<i>t</i> -test <i>p</i>	Nonparametric <i>p</i>	Comparison groups	<i>t</i> -test <i>p</i>	Nonparametric p
Hi vs. Eq	0,000	0,000	Cu3 vs. Cu4	0,924	0,767
Hi vs. St	0,000	0,000	Cu3 vs. Cu5	0,166	0,180
Hi vs. Cu	0,086	0,063	Cu4 vs. Cu5	0,074	0,180
Eq vs. St	0,000	0,000	St2 vs. St4	0,754	0,499
Eq vs. Cu	0,000	0,000	St2 vs. St5	0,513	0,499
St vs. Cu	0,139	0,136	St4 vs. St5	0,742	0,507
			Eq5 vs. Hi5	0,000	0,001
			Cu5 vs. Hi5	0,137	0,180
Hi1 vs. Hi2	0,477	0,593	St5 vs Hi5	0,068	0,087
Hi1 vs. Hi3	0,332	0,465	Cu5 vs. Eq5	0,010	0,180
Hi1 vs. Hi4	0,043	0,180	St5 vs. Eq5	0,042	0,075
Hi1 vs. Hi5	0,401	0,465	St5 vs. Cu5	0,111	0,180
Hi2 vs. Hi3	0,166	0,109	Eq2 vs. Eq3	0,029	0,180
Hi2 vs. Hi4	0,222	0,180	Eq2 vs. Eq4	0,067	0,180
Hi2 vs. Hi5	0,581	0,655	Eq2 vs. Eq5	0,129	0,180
Hi3 vs. Hi4	0,382	0,180	Eq3 vs. Eq4	0,372	0,398
Hi3 vs. Hi5	0,101	0,080	Eq3 vs. Eq5	0,119	0,326
Hi4 vs. Hi5	0,03	0,180	Eq4 vs. Eq5	0,811	0,735

tests to evaluate δ^{13} C differences between each of the groups (Table 3), accepting the null hypothesis of no differences among means unless p < 0.05. We use SPSS 11.5 software for the statistical analysis.

Analytical results and discussion

The carbon isotopic ratio of gomphothere and horse samples provides significant ecological results. Between horses, the *Hippidion* samples are more homogeneous than the *Equus* (*Amerhippus*) one (Table 1 and Figure 1).

All the species of *Hippidion* were almost exclusively C₃ feeders but some individuals from Bolivia and Argentina fall at the lower end of the mixed C_3/C_4 range. For instance, *Hippidion principale* from the Eastern corridor (at sea level) and Hippidion devillei from the Andes corridor yield similar δ^{13} C values suggesting that they ate mainly C₃ plants. The same pattern of dietary partitioning was obtained when comparisons were made between the same taxa at different latitudes (between 22°S and 52°S). From the upper Pliocene (Hippidion devillei from Uquía locality) to the lower Pleistocene (Hippidion principale, from the province of Buenos Aires and *Hippidion devillei* from the Tarija locality) the dietary partitioning remains similar. The same pattern in dietary partitioning is observed throughout the Middle to Late Pleistocene (Figure 1) showing a predominance of C_3 plants. Also, we did not find differences between Hippidion saldiasi from the Ultima Esperanza in southern Patagonia and the other Hippidion species present at different localities across South America. Equus species have predominantly been grazers, and as such, carbon isotopic values provide evidence of the C_3 and C_4 grasses. The carbon isotope data indicates that Equus (Amerhippus) shows three different patterns of dietary partitioning. Samples of Equus (Amerhippus) neogeus from the province of Buenos Aires indicate a preference for C_3 plants in the diet. The samples from Ecuador and Bolivia [Equus (Amerhippus) andium and Equus (Amerhippus) *insulatus*] show a preference for a diet of mixed C₃-C₄ plants, while those from La Carolina (sea level of Ecuador), Bolivia, and Brazil are mostly C4 feeders. A few outliers (e.g. δ^{13} C values of 9,2; 6,1 and 5,4‰ from La Carolina) cannot be easily explained. These extremely high δ^{13} C values (above 3‰) cannot be explained by consumption of C₄ vegetation, which should impart an upper limit of about 3‰. These outliers could be the result from one of several possibilities, such as individuals living in costal peninsula areas of Ecuador during the time in which C₄ grasses were abundant and may have produced δ 13C values not observed in the modern ecosystem, or the sample presents taphonomic alteration.

For gomphotheres, the δ^{13} C values of *Cuviero*nius samples indicate mixed feeding (Table 1 and Figure 2). Carbon isotopic data from *Cuvieronius* from Bolivia (MacFadden *et al.*, 1994; MacFadden & Shockey, 1997) suggests an adaptation from mixed feeding to grazing. One notable exception was Cuvieronius from Chile. Specimens of this group indicate that they were exclusively C_3 feeders (Figure 2). Stegomastodon shows two different adaptations. Samples from Buenos Aires Province (except for Quequén Salado samples) and Brazil indicate that these species were mixed-feeders whereas those from La Carolina (Ecuador) were mostly C₄ feeders. Substantial differences in isotopic composition are also observed between these two genera as they evolved from the Middle to the Late Pleistocene (Figure 2). Stegomastodon from the Middle Pleistocene of Buenos Aires fed on a mixed diet, as their isotopic values are more homogeneous. Alternatively, Stegomastodon from the Late Pleistocene exhibit a wider range of dietary adaptations. These include an exclusively C_3 diet (Quequén Salado), a mixed C_3 - C_4 diet (Buenos Aires), and a diet completely composed of C₄ plants (Ecuador). The dietary regimes of *Cuvieronius* samples from the Middle and Late Pleistocene, on the other hand, show less variation. With the exception of the strictly C₃ feeding *Cuvieronius* of the Late Pleistocene in Chile, mixed feeding predominated in both the Middle Pleistocene (Bolivia) and the Late Pleistocene (Ecuador). A trend from a mixed C_3 - C_4 diet in the middle Pleistocene to a more strictly C_3 diet in the upper Pleistocene can be more clearly observed in the Buenos Aires remains.

Both parametric (t-test) and non-parametric (Wilcoxon) statistical tests (Table 3) confirm significant differences between Equus (Amerhippus) and *Hippidion* δ^{13} C values (t-test = -8.88; p = <0.01 and Wilcoxon Z = -4.86, p = <0.01). Between gomphotheres, *Cuvieronius* have δ^{13} C values between about -13.9 and -4‰ while Stegomastodon have δ^{13} C values between about -12.1 and -0.7‰. Parametric and non-parametric statistical tests show that there are no significant differences between both groups (t-test= -1.52; p=0.139 and Wilcoxon Z=-1.49, p=0.136). There are significant δ^{13} C differences between Equus (Amerhippus) and both genera of gomphotheres; and Hippidion and Stego*mastodon*. There are also no significant δ^{13} C differences between the Hippidion and Cuvieronius samples (Table 3).

Concluding Remarks

The Late Quaternary Extinction roughly coincided with the most recent glacial-interglacial transi-

Fig. 1.—Patterns of dietary partitioning through time for South American horses.

Fig. 2.—Patterns of dietary partitioning through time for South American gomphotheres.

tion, leading some to conclude that megafauna extinction was due to environmental change. Habitat loss hypotheses argue that as climate changed, areas with adequate conditions to maintain large mammals either disappeared entirely or became too small and fragmented to support viable populations (Koch & Barnosky, 2006). The mosaic-nutrient hypothesis is a special case of habitat loss. It argues that climate change reduced the growing season and local plant diversity, and also increased plant antiherbivore defenses, all of which reduced the carrying capacity for herbivores (Guthrie, 1984). On the other hand, the Co-evolutionary disequilibrium is a more general hypothesis. It posits that the high herbivore diversity of Pleistocene ecosystems was maintained by extensive resource partitioning and that an extremely rapid glacial-interglacial transition reorganized floras, disrupting this tightly coevolved system (Graham & Lundelius, 1984). The premise under these entire hypotheses is the claim that the last glacial-interglacial transition was unusually large and unusually rapid relative to earlier glacial-interglacial transitions, too fast for animal adaptation or redistribution in the new climate space. In this study, the diets of gomphotheres and horses from South America are assessed using carbon isotope analysis to test principally the mosaicnutrient and Co-evolutionary disequilibrium.

Based on modern analogues, Pleistocene horses are inferred to be grazers but none of the grazing horses were interpreted as consumers of only C_4 grasses. Our data shows that Equus (Amerhippus) had three different patterns of dietary partitioning. Equus (Amerhippus) neogeus from the province Buenos Aires indicates a preference for C_3 plants. Equus (Amerhippus) andium from Ecuador and Equus (Amerhippus) insulates from Bolivia show a preference in a mixed diet of C_3 - C_4 plants, while Equus (Amerhippus) santaeelenae from La Carolina (sea level of Ecuador) and Brazil are mostly C_4 feeders (Prado *et al.*, 2011). In particularly, the specimen from the latest Pleistocene shows a more focused dietary adaptation that suggests that they were specialized feeders.

Specimens of gomphotheres from the Middle and upper Pleistocene in South America exhibit feeding strategies similar to those of modern elephants, which live in diverse habitats, are opportunists, and therefore are capable of living on nearly any dietary mixture. Same specimen of *Cuvieronius* from Chile fed on C_3 plants exclusively, whereas other specimens of the genus had a mixed C_3 - C_4 diet. The genus *Stegomastodon* showed a broader range of dietary adaptations, including predominantly C_3 feeders (in Buenos Aires Province), exclusively C_4 feeders (in La Carolina Peninsula, Ecuador), and mixed C_3 - C_4 feeders (from several localities form Brazil and Argentina).

In sum, the strong resource partitioning among herbivores assumed under Co-evolutionary disequilibrium hypothesis is supported by isotopic data of horses from latest Pleistocene. *Hippidon* and *Equus* had very different diets. In contrast, species of gomphotheres from late Pleistocene in South America seem to have had less specialized diets containing a broad mix of both C_3 and C_4 plants, which is in line with the dietary assumptions of the mosaic-nutrient hypothesis, but does not support the assumptions of Co-evolutionary disequilibrium hypothesis.

ACKNOWLEDGMENTS

We wish to thank Jorge Morales who invited us to participate in this Volume in Honor of Leonard Ginsburg. Funding was provided by Project CGL2007-60790/BTE from the Dirección General de Investigación Científica y Técnica of Spain; AECID Project A/023681/09 from the Secretaria de Estado de Cooperación International of Spain; grants from the Universidad Nacional del Centro (http://www.unicen.edu.ar) and the Project ANPCYT (http://www.agencia.gov.ar) PICT 07-01563, Argentina. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Stefan Gabriel revised the English text.

References

- Alberdi, M.T.; Cerdeño, E. & Prado, J.L. (2008). Stegomastodon platensis (Proboscidea, Gomphotheriidae) en el Pleistoceno de Santiago del Estero, Argentina. Ameghiniana, 45(2): 257-271.
- Alberdi, M.T. & Prado, J.L. (1992). El registro de *Hippidion* Owen, 1869 y Equus (Amerhippus) Hoffstetter, 1950 (Mammalia, Perissodactyla) en América del Sur. Ameghiniana, 29: 265-284.
- Alberdi, M.T & Prado, J.L. (2008). Presencia de Stegomastodon (Gomphotheriidae, Proboscidea) en el Pleistoceno Superior de la zona costera de Santa Clara del Mar (Argentina). Estudios Geológicos, 64(2): 175-185.
- Alberdi, M.T.; Prado, J.L.; Ortiz-Jaureguizar, E.; Posadas, P. & Donato, M. (2011). Paleobiogeography of trilophodont gomphotheres (Mammalia: Proboscidea). A reconstruction applying DIVA (Dispersion-Vicariance Analysis). *Revista Mexicana de Ciencias Geológicas*, 28(2): 235-244.
- Alberdi, M.T.; Prado, J.L.; Perea, D. & Ubilla, M. (2007). Stegomastodon waringi (Mammalia, Proboscidea) from the Late Pleistocene of northeastern Uruguay. Neues Jarhbuch Geologie und Paläontologie, Abh. 243(2): 179-189.
- Alberdi, M.T. & Prieto, A. (2000). *Hippidion* (Mammalia, Perissodactyla) de las Cuevas de las provincias de Magallanes y Tierra de Fuego. *Anales del Instituto de la Patagonia, Serie Ciencias Humanas (Chile)*, 28: 147-171.
- Alberdi, M.T.; Prado, J.L. & Miotti, L. (2001). *Hippidion* saldiasi Roth, 1899 (Mammalia, Perissodactyla) at the Piedra Museo Site (Patagonia): Its implication for the regional economy and environmental reconstruction.

Journal of Archaeological Science, 28: 411-419. doi:10.1006/jasc.2000.0647

- Barnosky, A.D.; Bell, C.J.; Emslie, S.D.; Goodwin, H.T.; Mead, J.I.; Repenning, C.A.; Scott, E. & Shabel, A.B. (2004). Exceptional record of mid-Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations. *Proceedings of the National Academy of Sciences*, 101(25): 9297-9302. doi:10.1073/pnas.0402592101
- Bird, J.B. (1988). *Travels and Archaeology in South Chile*. University of Iowa Press, Iowa City.
- Bocherens, H.; Koch, P.L.; Mariotti, A.; Geraads, D. & Jaeger, J.-J. (1996). Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. *Palaios*, 11: 306-318. doi:10.2307/3515241
- Borrero, L.A. (2003). Taphonomy of the Tres Arroyos 1 Rockshelter, Tierra de Fuego, Chile. *Quaternary International*, 109-110: 87-93. doi:10.1016/S1040-6182(02)00205-7
- Borrero, L.A. (2008). Extinction of Pleistocene megamammals in South America: The lost evidence. *Quaternary International*, 185: 69-74. doi:10.1016/ j.quaint.2007.10.021
- Borrero, L.A. (2009). The Elusive Evidence: The Archeological Record of the South American Extinct Megafauna. In: American Megafaunal Extinctions at the End of the Pleistocene (Haynes, G., ed.). Springer, 145-168. doi:10.1007/978-1-4020-8793-6 8
- Bryan, A.; Casamiquela, R.; Cruxent, J.; Gruhn, R. & Ochsenius, C. (1978). An El Jobo mastodon kill at Taima-Taima, Venezuela. *Science*, 200: 1275-1277. doi:10.1126/science.200.4347.1275
- Cerling, T.E.; Harris, M.J.; MacFadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V. & Ehleringer, J.R. (1997). Global vegetation change through the Miocene/Pliocene boundary. *Nature*, 389: 153-158. doi:10.1038/38229
- Cerling, T.E.; Wang, Y. & Quade, J. (1993). Global ecological change in the late Miocene: expansion of C4 ecosystems. *Nature*, 361: 344-345. doi:10.1038/361344a0
- Cione, L.A.; et al 2009Did Humans Cause the Late Pleistocene-Early Holocene Mammalian Extinctions in South America in a Context of Shrinking Open Areas? In: *American Megafaunal Extinctions at the End of the Pleistocene* (Haynes, G., ed.). Springer, 125-144. doi:10.1007/978-1-4020-8793-6_7
- Correal Urrego, G. (1982). Restos de megafauna en la Sabana de Bogotá. *Caldasia*, 13(64): 487-547.
- De Niro, M.J. & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. *Geochima et Cosmochimica Acta*, 42: 495-506. doi:10.1016/0016-7037(78)90199-0
- Dillehay, T.D. & Collins, M. (1988). Early cultural evidence from Monte Verde in Chile. *Nature*, 332: 150-152. doi:10.1038/332150a0
- Ehleringer, J.R.; Field, C.B.; Lin, Z.F. & Kuo, C.Y. (1986). Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. *Oecologia*, 70: 520-526. doi:10.1007/BF00379898
- Ehleringer, J.R.: Sage, R.F.; Flanagan, L.B. & Pearcy, R.W. (1991). Climatic change and evolution of C₄

photosynthesis. *Trends in Ecology & Evolution*, 6: 95-99. doi:10.1016/0169-5347(91)90183-X

- Feranec, R.S.; Hadly, E.A. & Paytan, A. (2009). Stable isotopes reveal seasonal competition for resources between late Pleistocene bison (*Bison*) and horse (*Equus*) from Rancho La Brea, southern California. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 271: 153-160. doi:10.1016/j.palaeo.2008.10.005
- Ficcarelli, G.; Coltorti, M.; Moreno Espinosa, M.; Pieruccini, P.L.; Rook, L. & Torre, D. (2003). A model for the Holocene extinction of the mammal megafauna in Ecuador. *Journal of South American Earth Sciences*, 15: 835-845. doi:10.1016/S0895-9811(02)00145-1
- Fiedel, S. (2009). Sudden Deaths: The Chronology of Terminal Pleistocene Megafaunal Extinction. In: American Megafaunal Extinctions at the End of the Pleistocene (Haynes, G., ed.). Springer, 21-37. doi:10.1007/978-1-4020-8793-6_2
- Graham, R.W. & Lundelius, E.L. (1984). Coevolutionary disequilibrium and Pleistocene extinctions. In: *Quaternary Extinctions: A Prehistoric Revolution* (Martin, P.S. & Klein, R.G., eds.). University of Arizona Press, Tucson, 223-249.
- Guérin C. (1991). La faune de vertébres du Pléistocène supèrior de l'aire archéologique de São Raimundo Nonato (Piaui, Brésil). *Comptes Rendus de l'Academie des Sciences*, Paris, 312(2): 567-572.
- Gutiérrez, M.; Alberdi, M.T.; Prado, J.L. & Perea, D. (2005). Late Pleistocene Stegomastodon (Mammalia, Proboscidea) from Uruguay. *Neues Jahrbuch für Geologie und Paläontologie*, *Mh.*, (11): 641-662.
- Gutiérrez, M.A. & Martínez, G.A. (2008). Trends in the faunal human exploitation during the Late Pleistocene and Early Holocene in the Pampean region (Argentina). Quaternary International, 191: 53-68. doi:10.1016/j.quaint.2007.09.024
- Guthrie, R.D. (1984). Mosaics, allelochemics and nutrients. An ecological theory of late Pleistocene Megafaunal Extinction. In: *Quaternary Extinctions: A Prehistoric Revolution* (Martin, P.S. & Klein, R.G., eds.), University of Arizona Press, Tucson, 259-298.
- Haynes, G. (2002). The Catastrophic Extinction of North American Mammoths and Mastodonts. *World Archaeo*logy, 33(3): 391-416. doi:10.1080/00438240120107440
- Koch, P.L. & Barnosky, A.D. (2006). Late Quaternary Extinctions: State of the Debate. Annual review of ecology evolution systematics, 37: 215-50. doi:10.1146/annurev.ecolsys.34.011802.132415
- Koch, P.L.; Behrensmeyer, A.K.; Tuross, N. & Fogel, M.L. (1990). The fidelity of isotopic preservation during bone weathering and burial. *Annual Report of* the Director Geophysical Laboratory, Carnegie Institution of Washington, 1989-1990: 105-110.
- Koch, P.L.; Fogel, M.L. & Tuross, N. (1994). Tracing the diets of fossil animals using stable isotopes. In: *Stable Isotopes in Ecology and Environmental Science* (Lajtha, K. & Michener, R.H., eds.), Blackwell Scientific, 63-92.
- Latorre, C.; Quade, J. & McIntosh, W.C. (1997). The expansion of C_4 grasses and global change in the late

Miocene: stable isotope evidence from the Americas. *Earth and Planetary Science Letters*, 146: 83-96. doi:10.1016/S0012-821X(96)00231-2

- Lee-Thorp, J.A.; Sealy, J.C. & Merwe, N.J. Van der (1989). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. *Journal of Archaeological Science*, 16: 712-715.
- Lee-Thorp, J.A.; Merwe, N.J. van der & Brain, C.K. (1994). Diet of *Australopithecus robustus* at Swartkrans from stable carbon isotopic analysis. *Journal of Human Evolution*, 27(4): 361-372. doi:10.1006/jhev.1994.1050
- Lee-Thorp, J.A. & Merwe, N.J. van der (1987). Carbon isotope analysis of fossil bone apatite. *South African Journal of Science*, 83: 712-715.
- MacFadden, B.J. (1998). Preorbital facial fossae Onohippidium, and origin of South American Pleistocene horses: response to Alberdi and Prado. Journal of Vertebrate Paleontology, 18(3): 673-675. doi:10.1080/ 02724634.1998.10011095
- MacFadden, B.J. (2000a). Middle Pleistocene climate change recorded in fossil mammal teeth from Tarija Bolivia, and upper limit of the Ensenadan Land-Mammal Age. *Quaternary Research*, 54: 121-131. doi:10.1006/qres.2000.2146
- MacFadden, B.J. (2000b). Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. *Annual Review of Ecology and Systematics*, 31: 33-59. doi:10.1146/annurev.ecolsys.31.1.33
- MacFadden, B.J. (2005). Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. *Quaternary Research*, 64: 113-124. doi:10.1016/j.yqres.2005.05.003
- MacFadden, B.J.; Cerling, T.E.; Harris, J.M. & Prado, J.L. (1999). Ancient latitudinal gradients of C₃/C₄ grasses interpreted from stable isotopes of New World Pleistocene horses. *Global Ecology and Biogeography*, 8: 137-149.
- MacFadden, B.J.; Cerling, T.E. & Prado, J. (1996). Cenozoic terrestrial ecosystem in Argentina: Evidence from Carbon isotopes of Fossil Mammal Teeth. *Palaios*, 11: 319-327. doi:10.2307/3515242
- MacFadden, B.J. & Higgins, P. (2004). Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panamá. *Oecologia*, 140: 169-182. doi:10.1007/s00442-004-1571-x
- MacFadden, B.J. & Shockey, B.J. (1997). Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. *Paleobiology*, 23(1): 77-100.
- MacFadden, B.J.; Wang, Y.; Cerling, T.E. & Anaya, F. (1994). South American fossil mammals and carbon isotopes: a 25 million-year sequence from the Bolivian Andes. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 107(3/4): 257-268. doi:10.1016/0031-0182(94)90098-1
- Martin, P.S. (1984). Prehistorc Overkill: The Global Model. In: *Quaternary Extinctions: A Prehistoric*

Revolution (Martin, P.S. & Klein, R.G., eds.), University of Arizona Press, Tucson, 354-403.

- Martinic, M.B. (1992). *Historia de la Región Magallánica*. Santiago.
- Mengoni Goñalons, G.L. (1983). Prehistoric utilization of faunal resources in arid Argentina. *British Archaeological Report, International Series*, 163: 325-335.
- Mengoni Goñalons, G.L. (1987). Modificaciones culturales y animales en los huesos de los niveles inferiores del sitio Tres Arroyos 1 (Tierra del Fuego, Chile). *Anales del Instituto de la Patagonia (Serie Ciencias Sociales*), 17: 61-66.
- Miotti, L. & Salemme, M. (1999). Biodiversity, taxonomic richness and specialists-generalists during Late Pleistocene/Early Holocene times in Pampa and Patagonia (Argentina, Southern South America). *Quaternary International*, 53/54: 53-68. doi:10.1016/S1040-6182(98)00007-X
- Montané, J. (1968). Paleo-Indian remains from Laguna de Tagua Tagua, Central Chile. *Science*, 161: 1137-1138. doi:10.1126/science.161.3846.1137
- Nami, H.G. & Menegaz, A.N. (1991). Cueva del Medio: aportes para el conocimiento de la diversidad faunística hacia el Pleistoceno-Holoceno en la Patagonia Austral. Anales del Instituto de la Patagonia, 20: 117-132.
- Núñez, L.; Varela, J.; Casamiquela, R. & Villagrán, C. (1994). Reconstrucción multidisciplinaria de la ocupación prehistórica de Quereo, centro de Chile. *Latin American Antiquity*, 5: 99-118. doi:10.2307/971558
- O'Leary, M.H. (1988). Carbon isotopes in photosynthesis. Fractionation techniques may reveal new aspects of carbon dynamics in plants. *BioScience*, 38(5): 328-336.
- Politis, G.G. & Messineo, P.G. (2008). The Campo Laborde site: new evidence for the Holocene survival of Pleistocene megafauna in the Argentine Pampas. *Quaternary International*, 191: 98-114. doi:10.1016/ j.quaint.2007.12.003
- Prado, J.L. & Alberdi, M.T. (2010). Quaternary mammalian faunas of the Pampean Region. *Quaternary International*, 212: 176-186. doi:10.1016/j.quaint.2009.03.010
- Prado, J.L.; Sánchez, B. & Alberdi, M.T. (2011). Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma. *BMC Ecology*, http://www.biomedcentral.com/1472-6785/11/15
- Quade, J.; Cerling, T.E.; Barry, J C.; Morgan, M.E.; Pilbeam, D.R.; Chivas, A.R.; Lee-Thorp, J.A. & Merwe N.J. van der (1992). A 16-Ma record of paleodiet using

carbon and oxygen isotopes in fossil teeth from Pakistan. *Chemical Geology (Isotope Geoscience Section)*, 94: 183-192. doi:10.1016/0168-9622(92)90011-X

- Sánchez, B. ; Prado, J.L. & Alberdi, M.T.(2004). Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). *Paleobiology*, 30(1): 146-161. doi:10.1666/0094-8373(2004)030<0146:FEDA-EO>2.0.CO;2
- Sánchez, B.; Prado, J.L. & Alberdi, M.T. (2006). Ancient feeding ecology and extinction of Pleistocene horses from the Pampean Region (Argentina). *Ameghiniana*, 43(2): 427-436.
- Smith, B.N. & Epstein, S. (1971). Two categories of ¹³C/¹²C ratios for higher plants. *Plant Physiology*, 47: 380-384. doi:10.1104/pp.47.3.380
- Steele, J. & Politis, G. (2009). AMS 14C dating of early human occupation of southern South America. *Journal of Archaeological Science*, 36: 419-429. doi:10.1016/j.jas.2008.09.024
- Sullivan, C.H. & Kruger, H.W. (1981). Carbon isotope analysis of separate chemical phases in modern and fossil bone. *Nature*, 301: 177-178. doi:10.1038/ 301177a0
- Stowe, L.G. & Teeri, J.A. (1978). The geographic distribution of C_4 species of the Dicotyledonae in relation to climate. *The American Naturalist*, 112: 609-623. doi:10.1086/283301
- Teeri, J.A. & Stowe, L.G. (1976). Climatic patterns and distribution of C₄ grasses in North America. *Oecologia*, 23: 1-12.
- Tiezen, L.L.; Hein, D.; Qvortrup, S.A.; Troughton, J.H. & Imbamba, S.K. (1997). Use of d¹³C values to determine vegetation selectivity in East African herbivores. *Oecologia*, 37: 351-359.
- Tütken, T. & Vennemann, T. (2009). Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany. *Paläontologische Zeitschrift*, 83: 207-226. doi:10.1007/s12542-009-0011-y
- Vogel, J.C. (1978). Isotopic assessment of the dietary habitats of ungulates. South African Journal of Science, 74: 298-301.
- Vogel, J.C.; Fuls, A. & Ellis, R.P. (1978). The geographical distribution of Kranz grasses in South Africa. South African Journal of Science, 74: 209-215.
- Webb, S.D. (1991). Ecogeography and the Great American Interchange. *Paleobiology*, 17: 266-280.

Recibido el 23 de noviembre de 2010 Aceptado el 9 de septiembre de 2011