The Pedregal granite (Portugal): petrographic and geochemical characterization of a peculiar granitoid
El granito de Pedregal (Portugal): caracterización petrográfica y geoquímica de un granitoide peculiar

J.A. Ferreira1, M.A. Ribeiro1, H.C.B. Martins1

1 Geology Centre/Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal. Email: joana.alexandra.ferreira@gmail.com

 

ABSTRACT

The Pedregal granite outcrops in the Central Iberian Zone, northern Portugal, in the eastern border of a synorogenic variscan granite-migmatite complex sub-concordant with the regional metamorphic structures. It is a granitoid (ca. 3 km2) with an elongated NW-SE shape intruded in staurolite-micaschist and banded gneiss-migmatite rocks, with local igneous breccias in the contact. The country rocks belong to a metapelitic and metasammitic sequence of Edicarian-Cambrian age, known as the “Complexo Xisto-Grauváquico” (CXG) which shows a main regional foliation with a NW-SE to NNW-SSE direction. The Pedregal granite is peraluminous (its A/CNK parameter ranges from 1.18 to 1.62), with a magnesian and alkali to alkali-calcic signature. The peculiar features of the granite are high contents of Zr (389 to 435 ppm) and a LREE flat pattern, which are uncommon characteristics for granitic rocks, as well as the corroded shape of the biotite, and the large amount of secondary muscovite. These peculiar features distinguish it from the adjacent synorogenic granites.

The field, petrographical and chemical features of the Pedregal granite are in accordance with a second phase of partial melting of a residuum, depleted by melt segregation during a first melting episode with the involvement of peritectic garnet and abundant residual biotite with LREE- and Zr-bearing accessory minerals. Besides, the intrusive character of the granite, and the presence of metasedimentary xenoliths point out to a secondary diatexite.

Keywords: Variscan granites; anatexis; geochemistry; rare earth elements

 

RESUMEN

El granito de Pedregal aflora en la Zona Centro-Ibérica, en el norte de Portugal, en el borde oriental de un complejo granito-migmatítico sinorogénico varisco, subconcordante con las estructuras metamórficas regionales. Es un granitoide (ca. 3 km2) de forma elongada NW-SE, que intruye en micaesquistos estaurolíticos y en rocas gneissico-migmatíticas bandeadas, con brechas ígneas locales en el contacto. Las rocas encajantes pertenecen a una secuencia metapelítica-metasamítica de edad Ediacariense - Cámbrico, conocida como el “Complejo Esquisto-Grauváquico” (CEG), que muestra una foliación regional principal NW-SE a NNW- SSE. El granito de Pedregal es peralumínico (el parámetro A/CNK oscila desde 1.18 hasta 1.62), con una composición magnesiana, entre alcalina y alcalino-cálcica. Sus características peculiares son el alto contenido de Zr (389–435 ppm) y de tierras raras ligeras (LREE) que presentan un patrón plano, la forma corroída de la biotita, y la gran cantidad de moscovita secundaria. Estas características peculiares lo distinguen de los otros granitos sinorogénicos adyacentes.

Las características de campo, petrográficas y químicas del granito de Pedregal parecen apuntar a una segunda fase de fusión parcial de un residuo, empobrecido por la segregación de fundido durante una primera fase de fusión con participación de granate peritéctico y abundante biotita residual con minerales accesorios portadores de LREE y Zr. Además, el carácter intrusivo del granito, y la presencia de xenolitos metasedimentarios sugieren una diatexita secundaria.

Palabras Clave: Granitos variscos; anatexia; geoquímica; tierras raras

 

Recibido el 1 de abril de 2014 / Aceptado el 11 de noviembre de 2014 / Publicado online el 09 de diciembre de 2014

Citation / Cómo citar este artículo: J.A. Ferreira et al. (2014). The Pedregal granite (Portugal): petrographic and geochemical characterization of a peculiar granitoid. Estudios Geológicos 70(2): e019. http://dx.doi.org/10.3989/egeol.41730.321.

Copyright: © 2014 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 License.


 

CONTENT

IntroductionTOP

The occurrence of S-type granitic rocks associated with thermal gneiss migmatitic domes in orogenic context is demonstrated by several authors for example at the Appalachians (Maine, USA) (Solar & Brown, 2001), Armorican Massif (St. Malo, France) (Milorde et al., 2001) and Bohemian Massif (Austria) (Vanderhaeghe, 2009). The existence of these thermal domes has a relation of cause-effect with syn-orogenic magmatism and metamorphism, The association of isochronous lateral thermal gradients more significantly by advective rather than by conductive heat transport is proved in this kind of orogenic context (Lux et al., 1986; Lancaster et al., 2008). This advection could be related with ascension of fluids, melts or magmas.

In the Iberian Massif some works have been developed about this theme (Viruete et al., 2000; Alcock et al., 2009; Díez Fernández et al., 2012). Since the 80’s, multiple publications put in evidence the association of anatetic granites with gneiss-migmatite rocks at the Portuguese Variscan Orogeny (Holtz & Barbey, 1991; Moita et al., 2009; Bento dos Santos et al., 2010; Valle Aguado et al., 2010; Ribeiro et al., 2011; Areias et al., 2012; Ferreira, 2013; Ferreira et al., 2013).

Regarding the NW sector of Portugal, during the 1950/60’s decades Carlos Teixeira referred the existence of migmatitic rocks associated to the “Oporto Granite” which is a two-mica syntectonic granite (Carríngton da Costa & Teixeira, 1957). In the last decades the granites outcropping in the eastern border of Porto Massif were described and dated taking in account their relation with variscan deformation phases, namely D2 and D3 (Pinto et al., 1987; Pereira et al., 1992; Mendes, 1967/1968; Martins et al., 2001).

The objective of this study is the geological, mineralogical and geochemical characterization of the Pedregal granite and its relation with surrounding magmatic and metamorphic rocks. The aim is to contribute to a better understanding of the relationship between orogenic granites, anatexis and metamorphic grade in orogenic context.

Geological SettingTOP

The studied granite is mapped on the Geological Map of Portugal scale 1/50.000 (9C-Porto) (Carrington da Costa and Teixeira, 1957) and it has been classified as an alkaline two-mica granite. The Pedregal granite is a NW-SE elongated small granite body (ca. 3 km2) that is exposed to the north margin of the Douro river (Fig. 1). This pluton is intruded in staurolitic micaschists that belong to a metapelitic sequence of Edicarian-Cambrian age known as the “Complexo Xisto-Grauváquico” (CXG). The Pedregal granite body, with a SHRIMP U–Pb zircon age of 311 ± 5 Ma (Ferreira et al., 2014) is spatially associated with other synorogenic granites: Porto granite, a medium-grained alkaline two-mica granite with a zircon/monazite age of 318 ± 14 Ma (Martins et al., 2001, Gondomar granite, a coarse-grained alkaline tourmaline-rich granite) and Fânzeres granite, a foliated garnet-rich granite with a Rb-Sr age of 320 Ma (Pinto, 1987) (Fig. 1). The country rocks are also represented by gneiss-migmatite rocks. Locally, the contact is marked by igneous breccias with clasts of gneiss-migmatite and the Pedregal granite as matrix.

Fig. 1.—Geological sketch map of the studied area, based on the 1/50 000 geological map of Porto (Carrington da Costa & Teixeira, 1957 modified).

 

The Pedregal granite is a fine to medium-grained two mica granite, with small biotitic nodules (1 to 2 cm) that present an internal foliation whose direction ranges between NE-SW and E-W. This trend is opposite to regional NW-SE metamorphic structure and to the elongation of the pluton. It is a homogeneous rock, with an isogranular texture and locally the xenoliths have a preferential orientation.

Analytical methodsTOP

The petrography analysis was done through the observation of seven samples of the Pedregal granite using a transmission microscope. Some samples were analyzed by SEM (Scanning Electron Microscope), specifically the EDS (X-ray microanalysis) method, for identification and qualitative analysis of accessory and opaque minerals. These methodologies were carried out in the laboratories of the “Departamento de Geociências, Ambiente e Ordenamento do Território” (DGAOT) and “Centro de Materiais da Universidade do Porto” (CEMUP).

The whole-rock geochemistry analyses for lithogeochemistry purposes were done in the Activation Lab in Ontario, Canada, to obtain the major and trace element composition. These analyses were performed in five samples of the Pedregal granite (same samples of the petrographic study). The lithogeochemistry analyses required a lithium metaborato/tetraborate fusion with subsequent ICP (Inductively Coupled Plasma) and ICP-MS (Inductively Coupled Plasma-Mass Spectrometer) (FUS-ICP-MS). Fused sample is diluted and analyzed by Perkin Elmer Sciex ELAN 6000, 6100 or 9000 ICP/MS. Three blanks and five controls (three before sample group and two after) are analyzed per group of samples. Duplicates are fused and analyzed every 15 samples. Instrument is recalibrated every 40 samples (http://www.actlabs.com/).

PetrographyTOP

The Pedregal granite has a holocristallyne and heterogranular fine to medium-grained texture. The mineral assemblage consists of quartz + plagioclase + K-feldspar + biotite + muscovite + zircon + apatite + monazite + rutile ± sillimanite ± allanite ± Zn-rich hercynite.

The biotite crystals are elongated and corroded. The biotite-quartz and biotite-plagioclase intergranular boundaries (Fig. 2A) point to a textural disequilibrium suggesting that biotite could be a residual phase. The subhedral biotite crystals are often chloritized and contain small zircon and rutile needle-like inclusions. Small grains of no-altered biotite are included in subhedral muscovite. The elongated biotite crystals show preferential alignment and homogeneous distribution. In the small nodules the biotite is subhedral and less corroded than the elongated crystals. These nodules present compositional banding marked by biotite and secondary muscovite.

Fig. 2.—Photomicrographs: A–elongated and corroded crystal of biotite surrounded by quartz and plagioclase (N//); B.–quartz with sillimanite inclusions (N//); C–muscovite with zircon pleocroic halos and quartz inclusions (NX); D–euhedral muscovite with anomalous birefringence (NX).

 

The quartz is subhedral to anhedral and when included in others minerals (muscovite and plagioclase) assumes a globular shape. Frequently, the quartz crystals show inclusions of sillimanite and rutile needles (Fig. 2B).

The albite-oligoclase plagioclase is more abundant than K-feldspar, although the later presents crystals with great dimensions (ca. 600 μm). The plagioclase crystals are subhedral and frequently altered.

The muscovite has a secondary character, distinguishing two types: a subhedral muscovite showing irregular borders and quartz droplet inclusions (Fig. 2C) and an euhedral muscovite, with anomalous birefringence (Fig. 2D). The zircon, sillimanite and hercynite are included in both types of muscovite.

Whole-Rock GeochemistryTOP

The Pedregal granite is peraluminous (A/CNK parameter ranges from 1.18 to 1.62 and ASI ranges from 1.23 to 1.71), with a magnesian and alkali to alkali-calcic signature.

The major elements composition of the Pedregal granite shows relative low values of SiO2 (65–69 wt. %) and high concentrations of Al2O3 (15.71–16.68 wt. %) and K2O (5.21–5.96 wt. %) (Fig. 3). This granite has also high values of minor elements like TiO2 and P2O5. The granite shows high contents in Zr (388–435 ppm), La (91.6–130 ppm), Ce (243–320 ppm) and Th (72.3–137 ppm) (Table 1). The Harker diagrams show the values of the Pedregal granite compared to the country rocks (staurolite schist and greywacke), and the adjacent Porto two-mica granite. The contents of TiO2, P2O5, Zr and Th for Pedregal granite are higher than other plotted rocks. On the other hand, the content of alkalis is similar for the Pedregal granite and other plotted rocks.

Fig. 3.—Harker diagrams comparing the compostitons of the Pedregal granite, Porto two-mica granite and staurolitic schist and greywacke.

 
Table 1.—Whole rock major and minor (%) and trace (ppm) elements composition of Pedregal granite
P1 P2 P3 P6 P7
SiO2 65.28 68.57 69.18 65.3 66.38
Al2O3 15.71 16.12 15.98 16.68 16.46
Fe2O3(T) 3.68 2.93 2.5 2.59 2.28
MnO 0.036 0.019 0.012 0.018 0.014
MgO 1 0.81 0.73 0.8 0.71
CaO 1.58 0.7 0.52 0.65 0.33
Na2O 2.89 2.21 2.01 2.5 2.03
K2O 5.21 5.96 5.69 5.63 5.72
TiO2 0.886 0.747 0.688 0.701 0.676
P2O5 0.43 0.5 0.52 0.55 0.42
LOI 1.74 2.3 2.55 2.79 3.3
Total 98.44 100.9 100.4 98.21 98.33
A/CNK 1.18 1.42 1.53 1.46 1.62
Ba 1005 677 533 527 527
Sr 228 113 71 94 84
Y 14 12 11 12 9
Zr 435 416 388 398 389
Zn 50 160 120 140 110
Rb 266 344 333 405 385
Nb 9 6 5 5 5
Cs 5.5 4.9 4.4 63.8 6.1
La 114 130 101 91.6 98.9
Ce 246 320 264 243 260
Pr 30.7 41.5 37.6 35.3 37.1
Nd 110 156 146 142 148
Sm 16.2 22.2 22.2 22.3 22.1
Eu 1.39 1.03 0.89 0.89 0.95
Gd 7.1 7.6 7.2 8.7 7.7
Tb 0.7 0.6 0.6 0.7 0.6
Dy 3.4 3 2.6 2.9 2.5
Ho 0.5 0.4 0.4 0.4 0.4
Er 1.4 1.1 1 1.1 0.9
Tm 0.18 0.14 0.14 0.15 0.12
Yb 1 0.8 0.8 0.8 0.7
Lu 0.15 0.1 0.12 0.13 0.1
Hf 10.8 10.5 10.3 10 9.7
Ta 0.6 0.4 0.3 0.4 0.3
Pb 57 47 56 39 32
Bi <0.4 <0.4 <0.4 <0.4 <0.4
Th 72.3 133 137 130 135
U 8.8 13.4 12 9.9 12.8

The REE exhibit an almost flat pattern from La to Pr, but it doesn’t continue towards Sm without significant fractionation of LREE (La/Sm)N = 2.59–4.43) (Fig. 4). The heavy rare earth elements (HREE) show a pattern slightly more fractionated (Gd/Yb)N = 5.74–8.89). The Eu negative anomaly (Eu/Eu* = 0.20–0.40) is pronounced (Fig. 4). The low HREE content is opposed by the high Zr concentrations (Fig. 5A), which suggests different mineralogical controls. On the other hand the high LREE and also Th content could be controlled by the presence of monazite (Bea, 1996) (Fig. 5B).

Fig. 4.—REE chondrite-normalised patterns for Pedregal granite, Porto two-mica granite and country rocks (staurolitic schist and greywacke) (Evensen et al., 1978).

 

Fig. 5.—Variation diagrams for the Pedregal granite, Porto two-mica granite and country rocks (staurolitic schist and greywacke): A – Yb versus Zr; B – La versus Th.

 

The trace element contents of the Pedregal granite has been compared with the average composition of materials similar to the country rocks (SGC): NIBAS (Neoproterozoic Iberian Average Shale) (Ugidos et al., 2010). In the spider diagram the Pedregal granite shows a positive anomaly for Zr, LREE, Hf, Th and U and a negative anomaly in Y, Yb, Lu Ta (Fig. 6A).

Fig. 6.—A – Multi-element variation diagram for the Pedregal granite, normalized to NIBAS (Ugidos et al., 2010); B – Ta versus SiO2 for the Pedregal granite and Porto two-mica granite (data from two-mica granite by Almeida, 2001).

 

The moderate SiO2 values (65–69 wt. %), high ASI parameter (1.23 to 1.71), high contents of LREE, Zr, and Th, and the contrasts with more differentiated granites such as the Porto two-mica granite (Fig. 6B) put in evidence a peraluminous granite (Pedregal granite) without significant magmatic differentiation.

Discussion and ConclusionsTOP

Field, petrographical and chemical data of the Pedregal granite allow to emphasize the following features: (i) the intrusive character of Pedregal granite in the border of a synorogenic variscan granite-migmatite complex; (ii) the lithology of the host rocks consisting of staurolite-micaschist and banded gneiss-migmatite rocks; (iii) the peculiar structural/textural aspects of the granite, namely the abundance of small biotitic nodules and the corroded biotite crystals point to a textural reequilibrium in solid state; (iv) the geochemical composition, in particular the high peraluminous and low fractionated signature and the high content of Zr, Th, Ti and LREE.

The emphasized features suggest an origin by crustal partial melting with emplacement without magmatic differentiation.

Furthermore, according to Sylvester (1998) and Dong et al. (2013), the CaO/Na2O and Al2O3/TiO2 ratios give information about the nature of the magmatic source and the temperatures of partial melting in a strongly peraluminous system. In a granitic system, the CaO/Na2O ratio of strongly peraluminous granites derived from plagioclase-poor and clay-rich sources are lower (<0.3) than that of plagioclase-rich and clay-poor sources (>0.3). The high Al2O3/TiO2 ratios (>100) of strongly peraluminous granites point to cooler (<875 °C) granite melts and low Al2O3/TiO2 ratios (<100) to hotter (>875 °C) ones. Although this information is qualitative, it is in agreement with Zr saturation temperatures (Watson & Harrison, 1983) higher than 890 °C for the Pedregal granite.

In the Pedregal granite, the CaO/Na2O versus Al2O3/TiO2 and Rb/Ba versus Rb/Sr diagram point to a mixture of pelitic and psammitic sources, and formation of granitic melts at high temperatures (Fig. 7).

Fig. 7.—CaO/Na2O versus Al2O3/TiO2 and Rb/Ba versus Rb/Sr diagrams for the Pedregal granite (Dong et al., 2013 after Sylvester, 1998).

 

Although some of the geochemical peculiarities of the Pedregal granite could be explained by secondary processes (mainly muscovitization), the presence of dispersed corroded biotite and concentrated in banded nodules, point to a diatexite rock. The intrusive character and the presence of metasedimentary xenoliths imply some vertical migration.

The slightly high content of Fe2O3 + MgO, and the high content of Zr, Th, Ti and LREE, could be explained by previous partial melting and segregation of a peritectic garnet-rich melt. This garnet was observed in field in the associated gneiss-migmatite rocks (Fig. 1), which may correspond to a first segregated melt. Therefore the source of the Pedregal rock was a residual biotite-rich pelitic/psammitic rock depleted by this first episode of melting. The high content of LREE, Th and U could be explained by the presence of monazite, and the high values of Zr and Ti by the abundance of rutile. The biotite and these associated accessories phases as source minerals may justify the geochemical features of the Pedregal granite.

Taking into account all the above considerations the Pedregal granite may be considered as a secondary diatexite, resulting from a second phase of crustal partial melting in prograde conditions, after the segregation of a first melt with peritectic garnet.

ACKNOWLEDGMENTSTOP

This work has been financially supported by the “Centro de Geologia da Universidade do Porto” unit 39; FCT and by the project PETROCHRON – PTDC/CTE – Gix/112561/2009. The authors would like to thank David Orejana for his constructive comments.

 

ReferencesTOP


Alcock, J.E.; Martínez Catalán, J.R.; Arenas, R. & Díez Montes, A. (2009). Use of thermal modeling to assess the tectono-metamorphic history of the Lugo and Sanabria gneiss domes, Northwest Iberia. Bulletin de la Société Géologique de France, 180: 179–197. http://dx.doi.org/10.2113/gssgfbull.180.3.179.
Almeida, A. (2001). Geochemical and Geochronological Characterization of the Syntectonic Two-Mica Granite of Porto (NW Portugal). Abstracts volume. III Congreso Ibérico de Geoquímica and VIII Congreso de Geoquímica de España, Zaragoza, 311–315.
Areias, M.; Ribeiro, M.A. & Dória, A. (2012). Caracterização da faixa gnaissomigmatítica da zona costeira do NW de Portugal. Proceedings, 46° Congresso Brasileiro de Geologia/1° Congresso de Geologia dos Países de Língua Portuguesa. Santos, Brasil.
Bea, F. (1996). Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37 (3): 521–552. http://dx.doi.org/10.1093/petrology/37.3.521.
Bento dos santos, T.; Ribeiro, M.L.; Clavijo, E.; Díez Montes, A. & Solá, A.R. (2010). Estimativas geotermobarométricas e percursos P-T de migmatitos dos Farilhões, arquipélago das Berlengas, Oeste de Portugal. e-Terra, 16, 11.
Carríngton da Costa, J. & Teixeira, C. (1957). Carta Geológica de Portugal, na escala 1/50.000, Notícia Explicativa da Folha 9-C, Porto. Serviços Geológicos de Portugal, 39 pp.
Díez Fernández, R.; Martínez Catalán, J.R.; Barreiro, J.G. & Arenas, R. (2012). Extensional Flow during Gravitational Collapse: A Tool for Setting Plate Convergence (Padrón Migmatitic Dome, Variscan Belt, NW Iberia). The Journal of Geology, 120: 83–103. http://dx.doi.org/10.1086/662735.
Dong, M.; Dong, G.; Mo, X.; Santosh, M.; Zhu, D.; Yu, J.; Nie, F. & Hu, Z. (2013). Geochemistry, zircon U–Pb geochronology and Hf isotopes of granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic evolution along the Gondwana margin. Lithos, 179: 36–47. http://dx.doi.org/10.1016/j.lithos.2013.05.011.
Evensen, N.M.; Hamilton, P.J. & O’Nions, R.K. (1978). Rare earth abundances in chondrite meteorites. Geochimica et Cosmochimica Acta, 42: 1199–1212. http://dx.doi.org/10.1016/0016-7037(78)90114-X.
Ferreira, J.A. (2013). Caracterização do granito do Pedregal. Condicionantes da sua aplicação. Master Thesis, Universidade do Porto, 155 pp.
Ferreira, J.A.; Martins, H.C.B.; Ribeiro, M.A. & Ferreira, P. (2013). The Pedregal granitoid: a peculiar diatexitic rock (?) in a granite-migmatite complex. Mineralogical Magazine, 77(5): 1079.
Ferreira, J.A.; Martins, H.C.B. & Ribeiro, M.A. (2014). Geocronologia (U-Pb) e Geoquímica do granito do Pedregal. Comunicações Geológicas. 101: in press.
Holtz, F. & Barbey, P. (1991). Genesis of Peraluminous Granites II. Mineralogy and Chemistry of the Tourem Complex (North Portugal). Sequential Melting vs. Restite Unmixing. Journal of Petrology, 32 (5): 959–978. http://dx.doi.org/10.1093/petrology/32.5.959.
Lancaster, P.J.; Baxter, E.F.; Ague, J.J.; Breeding, C.M. & Owens, T.L. (2008). Synchronous peak Barrovian metamorphism driven by syn-orogenic magmatism and fluid flow in southern Connecticut, USA. Journal of Metamorphic Geology, 26: 527–538. http://dx.doi.org/10.1111/j.1525-1314.2008.00773.x.
Lux, D.R.; De Yoreo, J.J.; Guidotti, C.V. & Decker, E.R. (1986). Role of plutonism in low-pressure metamorphic belt formation. Nature, 323: 794–797. http://dx.doi.org/10.1038/323794a0.
Martins, H.C.B.; Almeida, A.; Noronha, F. & Leterrier, J. (2001). Novos dados geocronológicos de granitos da região do Porto: granito do Porto e granito de Lavadores. Actas do VI Congresso de Geoquímica dos Países de Língua Portuguesa e XII Semana de Geoquímica, Universidade do Algarve, Faro, 146–148.
Mendes, F. (1967/1968). Contribuition à l’étude géochronologique, par le méthode au strontium, des formations cristallines du Portugal. Boletim do Museu e Laboratório Mineralógico e Geológico da Faculdade de Ciências da Universidade de Lisboa, 11: 1–155.
Milorde, E.; Sawyer, E.W. & Brown, M. (2001). Formation of a Diatexite Migmatite and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an Example from St. Malo, France. Journal of Petrology, 42 (3): 487–505. http://dx.doi.org/10.1093/petrology/42.3.487.
Moita, P.; Santos, J.F. & Pereira, M.F. (2009). Layered granitoids: Interaction between continental crust recycling processes and mantle-derived magmatism Examples from the Évora Massif (Ossa–Morena Zone, southwest Iberia, Portugal). Lithos, 111: 125–141. http://dx.doi.org/10.1016/j.lithos.2009.02.009.
Pereira, E.; Cabral, J.; Cramez, P.; Moreira, A.; Noronha, F.; Oliveira, J.M.; Farinha Ramos, J.M.; Reis, M.L.; Ribeiro, A.; Ribeiro, M.L. & Simões, M. (1992). Carta geológica de Portugal, Escala 1/200.000, Notícia Explicativa da Folha 1. Serviços Geológicos de Portugal, Lisboa, 83 pp.
Pinto, M.S. (1984). O granito gnáissico de Fânzeres (Porto, Portugal) – Idade e caracterização geoquímica geral. Memórias e Notícias, Universidade de Coimbra, 98: 231–242.
Pinto, M.S.; Casquet, C.; Ibarrola, E.; Corrétge, L.G. & Ferreira, M.P. (1987). Síntese geocronológica dos granitoides do Maciço Hespérico. In: Geologia de los granitoides y rocas associadas del Macizo Hespérico (Libro Homenaje a L.C.G. Figueirola) (Bea, F.; Carmina, A.; Gonzalo, J.C.; Plaza, M.L. & J.M.L. Rodrigues., Eds.). Editorial Rueda, Madrid, 69–86.
Ribeiro, M.A.; Sant’Ovaia, H. & Dória, A. (2011). Litologias gnaisso-migmatíticas da faixa Lavadores-Madalena: possível significado das paragéneses com hercinite. Simpósio Modelação de Sistemas Geológicos, Coimbra, 343–351.
Solar, G.S. & Brown, M. (2001). Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons?. Journal of Petrology, 42 (4): 789–823. http://dx.doi.org/10.1093/petrology/42.4.789.
Sylvester, P.J. (1998). Post-collisional strongly peraluminous granites. Lithos, 45: 29–44. http://dx.doi.org/10.1016/S0024-4937(98)00024-3.
Ugidos, J.M.; Sánchez-Santos, J.M.; Barba, P. & Valladares. M. I. (2010). Upper Neoproterozoic series in the Central Iberian, Cantabrian and West Asturian Leonese Zones (Spain): Geochemical data and statistical results as evidence for a shared homogenised source area. Precambrian Research, 178: 51–58. http://dx.doi.org/10.1016/j.precamres.2010.01.009.
Valle Aguado, B.; Azevedo, M.R.; Santos, J.F. & Nolan, J. (2010). O Complexo Migmatítico de Mundão (Viseu, norte de Portugal). e-Terra, 16: 9.
Vanderhaeghe, O. (2009). Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477: 119–134. http://dx.doi.org/10.1016/j.tecto.2009.06.021.
Viruete, J.E.; Indares, A. & Arenas, R. (2000). P-T Paths Derived from Garnet Growth Zoning in a Extensional Setting: an Example from the Tormes Gneiss Dome (Iberian Massif, Spain). Journal of Petrology, 41 (10): 1489–1515. http://dx.doi.org/10.1093/petrology/41.10.1489.
Watson, E.B. & Harrison, T.M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295–304. http://dx.doi.org/10.1016/0012-821X(83)90211-X.