A mammoth (Mammuthus primigenius Blumenbach 1799, Proboscidea) calf tooth from the Mousterian of Arbreda Cave (Serinyà, NE Iberian Peninsula)
Un diente de cría de mamut (Mammuthus primigenius Blumenbach 1799, Proboscidea) procedente del Musteriense de la Cueva de la Arbreda (Serinyà, NE de la Península Ibérica)

I. Rufí1, A. Solés2, J. Soler1, N. Soler1

1Àrea de Prehistòria, Departament d’Història i Història de l’Art, Universitat de Girona, Facultat de Lletres, Plaça Ferrater Mora, 1, 17004 Girona, Catalonia, Spain. Emails: isaac.rufi@udg.edu; joaquim.soler@udg.edu; narcis.soler@udg.edu. ORCID IDs: https://orcid.org/0000-0003-3658-0900; https://orcid.org/0000-0003-4962-4394; https://orcid.org/0000-0002-0011-1259

2ATZAGAIA. Arqueologia i Patrimoni. Investigació i difusió. Carrer Pau Casals, 9B, 101, 17100 La Bisbal d’Empordà, Catalonia, Spain. Email: albasic.labisbal@gmail.com. ORCID ID: https://orcid.org/0000-0003-2850-3876

 

ABSTRACT

Mammoth calf remains are rare in the Iberian fossil record. In Catalonia, a dP2 from Teixoneres Cave (Moià) has just been reported (Álvarez-Lao et al., 2017). In this paper, we present a new discovery of a mammoth calf from level J of Arbreda Cave. Its chronology is imprecise because of the lack of reliable absolute dates. However, the presence of Mousterian industry, 14C results from the top of the overlying level (I) and U-series results at the base of the stratigraphic column allow us to conclude that the chronology must be related to the early MIS-3 or MIS-4, older than c. 44 ka BP.

The C5 EC135 2302 remain is a left dp3 of a mammoth calf that was around one year old at the time of death. Morphological and morphometric studies taxonomically attribute it to Mammuthus primigenius Blumenbach 1799. The faunal context of this remain is not like that of the typical Eurasian tundra-steppe environments, where cold-adapted faunas are clearly predominant. On the other hand, Arbreda’s level J shows the typical record of the Last Glacial assemblages in Iberia, where eurythermic and temperate species dominate over cold-adapted faunas, which are represented only by a low percentage of identified remains. Following previous studies about cold-adapted faunas of the Iberian Peninsula, the Arbreda tooth is close to the second woolly mammoth dispersal episode but slightly older. In fact, the Arbreda mammoth remain teaches us that this second dispersal episode probably started earlier than was previously thought.

Keywords: Arbreda Cave; Mousterian; Woolly mammoth; Mammuthus primigenius.

 

RESUMEN

Los restos de crías de mamut son raros en el registro fósil de la Península Ibérica. Hasta ahora, en Cataluña, se conocen solo en la cueva de les Teixoneres (Moià), dónde se acaba de publicar una dP2 (Álvarez-Lao et al., 2017). En este artículo, se presenta un nuevo descubrimiento de un resto de cría de mamut procedente del nivel J de la cueva de la Arbreda. Su cronología es imprecisa por la falta de dataciones absolutas fiables. A pesar de todo, la presencia de industria lítica musteriense, las dataciones en 14C de la parte alta del nivel supreyacente (I) y los resultados de las series de uranio en la base de la columna estratigráfica permiten afirmar una cronologia relacionada con el MIS-3 antiguo u MIS-4, con una antigüedad superior a los c. 44 ka BP.

La pieza C5 EC135 2302 es un dp3 izquierdo de mamut que perteneció a una cría de alrededor de un año de edad al momento de su muerte. Los estudios morfológicos y morfométricos señalan una atribución taxonómica a Mammuthus primigenius Blumenbach 1799. El contexto faunístico de este resto no es el de los típicos ambientes de tundra-estepa euroasiáticos, donde predominan las especies adaptadas al frío. Contrariamente, el nivel J de la Arbreda muestra un conjunto típico de las faunas del último glaciar ibérico donde las especies euritérmicas y de ambientes templados dominan sobre las de clima frío. Teniendo en cuenta los estudios previos sobre el registro fósil de las faunas adaptadas al frío en la Península Ibérica, el deinte de la Arbreda se sitúa cerca del segundo episodio dispersivo del mamut lanudo, aunque más antiguo. De hecho, el resto de mamut de la Arbreda nos explica que este evento dispersivo probablemente empezó con anterioridad a lo que se establecía.

Palabras clave: Cova de l’Arbreda; Musteriense; Mamut lanudo; Mammuthus primigenius.

 

Recibido el 30 de enero de 2018 / Aceptado el 23 de agosto de 2018 / Publicado online el 2 de octubre de 2018

Citation / Cómo citar este artículo: Rufí I. et al. (2018). A mammoth (Mammuthus primigenius Blumenbach 1799, Proboscidea) calf tooth from the Mousterian of Arbreda Cave (Serinyà, NE Iberian Peninsula). Estudios Geológicos 74(2): e079. https://doi.org/10.3989/egeol.43130.478.

Copyright: © 2018 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non 4.0 International License.


 

CONTENT

IntroductionTOP

Quaternary proboscidean discoveries are not rare in the NE of Catalonia, where a large part of a Mammuthus meridionalis skeleton was found in the Incarcal Quarry (Mazo et al., 2003). Palaeoloxodon antiquus is not as well represented and only some tooth fragments were discovered in Mollet Cave (Serinyà) (Solés & Maroto, 2002) and Cau del Duc (Torroella de Montgrí) (Estévez, 1979). Some Middle Pleistocene proboscidean remains have also been recovered from the nearby municipality of Besalú, but their fragmentary conservation hinders a conclusive taxonomic attribution (Galobart et al., 1996).

Until recently, Palaeoloxodon antiquus was thought to be widely distributed within the Middle and Late Pleistocene interglacial periods in Europe because it was adapted to a temperate climate and parkland or wooded environments, and that its extinction took place at the end of MIS-5 (Kurtén, 1968; Mol et al., 2007). Lately, this belief has been challenged by some recent research at sites in the Atlantic Iberia and the Netherlands, where some remains indicate that this proboscidean persisted until MIS-3 (Mol et al., 2007; Stuart, 2005). Nevertheless, evidence of its existence in Italy (Grotta Guattari) after MIS-5 is weak.

It now seems clear that Mammuthus primigenius evolved in the Eurasian steppe from its ancestor Mammuthus trogontherii (Lister, 1996). The woolly mammoth has been associated with a cold, largely treeless environment, especially in the Mediterranean fringe of the Iberian Peninsula, where it has been related to the open landscapes of the last glaciation. However, its remains have sometimes been found in temperate, partly wooded conditions. In fact, in contrast to the Western-Central European assemblages, the Iberian Mammuthus primigenius assemblages show a different pattern because it involves a mixture of temperate and cold faunas (Álvarez-Lao & García, 2012).

Most of the woolly mammoth fossils of the Iberian Peninsula come from MIS-3 and MIS-2 contexts (Álvarez-Lao & García, 2011) located in the north (Cantabrian and Catalan areas). However, some of them have also been found in the central regions of Iberia (the Tagus estuary and the province of Madrid) and one of them was even found in the south (Padul Cave) (Álvarez-Lao et al., 2009; Álvarez-Lao & García, 2012). The discoveries of scarce Mammuthus trogontherii remains from the Middle Pleistocene of the Iberian Peninsula have been reported for the Guadix-Baza basins as well as for other sites in Cantabria, Toledo and Teruel (Ros-Montoya, 2010). Excavations in EDAR Culebro 1 (Madrid) have revealed the presence of mammoths in the Middle to Upper Pleistocene transition in central Spain (Manzano et al., 2011; Yravedra et al., 2014). The EDAR Culebro 1 mammoth has been classified as Mammuthus primigenius by Álvarez-Lao & García (2012). These authors agree with the primitive features that mammoth remains from the Aldehuela, Arriaga and Butarque sites display (Jarama and Manzanares basins) (Álvarez-Lao & García, 2010; Sesé & Soto, 2002). Although there seems to be a continuous record, the most reliable scenario for a lineage that had evolved on the Eurasian steppe is that it would have dispersed into the Iberian Peninsula during cold episodes.

It is difficult to predict changes to the palaeobiogeographic limits of the Mammuthus genus during the Upper Pleistocene, and its record does not seem continuous. Some authors claim that its anecdotal presence in the Iberian Peninsula can be only explained by migratory waves, which most recently are those of MIS-3 (between 43–31 cal ka BP, including Heinrich Event 4) and MIS-2 (between 28–18 cal ka BP, including Heinrich Event 2 and the Last Glacial Maximum) (Álvarez-Lao & García, 2010; Álvarez-Lao & García, 2011).

The presence of Mammuthus primigenius is well documented in the Cantabrian passage, a geographical setting containing other typical taxa of the Mammuthus-Coelodonta faunal complex: woolly rhinoceros (Coelodonta antiquitatis), reindeer (Rangifer tarandus), saiga antelope (Saiga tatarica), wolverine (Gulo gulo) and arctic fox (Alopex lagopus) (Álvarez-Lao & García, 2010).

In Catalonia, the coexistence of woolly mammoths and woolly rhinos in MIS-3 has been well documented in the oryctocenosis of Riera dels Canyars (Gavà) (Daura et al., 2013) and Unit III of Teixoneres Cave (Moià) (Álvarez-Lao et al., 2017). Nonetheless, this association could already be present in MIS-4 of Riera de Sant Llorenç (Viladecans) (Daura et al., 2013). Another remain that could belong to a Mammuthus primigenius is a humeral diaphysis recovered from level E of Abric Romaní (Capellades) (Rosell et al., 2012).

In the NE of Catalonia, Mammuthus primigenius remains are very scarce. The first of them were discovered by Francesc Xavier de Bolòs in the Clot del Llop site (Sant Andreu de Socarrats, Garrotxa), in the first half of the 19thcentury, for which we lack any chronological reference (Alsius, 1915). Nonetheless, during archaeological excavations in Cau de les Goges (Sant Julià de Ramis, Gironès) carried out between the end of the 19th and the beginning of the 20th century, a dental remain was recovered in a Solutrean context (Cabrera, 1919; Soler, 1997). In Arbreda Cave, the record of this proboscidean is dispersed in the stratigraphic record. An almost complete molar plate was recovered during excavations carried out by Josep Maria Corominas in 1972–73, in the Mousterian levels (layer 30 of Corominas, close to 6.00 metres deep). Estévez (1979) classified some pieces from the same Corominas excavation as proboscidean, scattered throughout the Solutrean, Gravettian and Mousterian levels. Although these remains have not been reviewed, recent archaeological excavations in Beta Sector have confirmed ivory fragments in the Solutrean culture levels. Previously, Maroto et al. (1996) had studied an ivory fragment from the Archaic Aurignacian (level H), now dated close to Heinrich event 4 (following the chronology of Sánchez Goñi & Harrison, 2010), but they did not exclude the possibility that it arrived there through the exchange of raw material with northern hunter-gatherer groups. In the following sections we will present a new mammoth calf premolar from Arbreda Cave, discovered in a Mousterian context (level J) and allowing us to complete the knowledge of this slippery taxon in the NE of the Iberian Peninsula.

Geographical and geological settingTOP

Arbreda Cave is situated at 42º09’04’’N and 2º44’45’’E at an altitude of 206 m above sea level. This archaeological site is located very close to the village of Serinyà (Girona province, Catalonia, Spain) (Figure 1) in a Palaeolithic complex known as Reclau Caves, where more than fourteen cavities, including large caves and little hollows, have been discovered since the 1940s. In terms of dimensions and archaeopaleontological record, the most important caves are Arbreda, Mollet, Mollet III, Pau and Reclau Viver (Soler, 1999).

Figure 1.—Location of Arbreda Cave on the NE of the Iberian Peninsula (A); simplified geological map after ICC-SGC-1:25.000 Banyoles 295-2-1 (B); general view of the Arbreda site (taken by Narcís Soler) (C).

 

The presence of these rock shelters is connected to the geological framework of the Banyoles-Besalú Basin (Julià, 1980), which is a morphodynamic hydrogeological unit that has been active in lake formation from the Lower Pliocene to the Holocene thanks to the existence of a lower Lutetian carbonate and gypsum substrate (Pallí, 1972). These karstified water-bearing rocks contain confined aquifers connecting the places where water enters, the pre-Pyrenean mountains of la Garrotxa, to the areas where it emerges, mostly in the Pla de l’Estany region (Sanz, 1985). The origin of these karst lakes is the collapse doline phenomenon, which creates funnel-shaped depressions (Roqué et al., 1999). The lakes’ carbonate sedimentation can occur in a great variety of facies, from carbonate muds to the biogenic littoral stromatolites (Brusi et al., 1996; Brusi et al., 2005).

The Reclau Caves are located at the conjunction of the Usall platform and the Serinyadell River valley, forming a terrace 200 m long, 50 m wide and with a slope of about 10 m. The Usall platform is a structural plain of lacustrine origin formed during the last part of the Lower Pleistocene (Julià, 1980) (Figure 1). Water from Usall’s springs flowed to the Serinyà area, where waterfalls built a fluvial travertine terrace between MIS-7 and MIS-6 (c. 215,000 and c. 134,000 BP) (Maroto, 2014). New U-Th analysis carried out in the tufa falls of Arbreda Cave have pushed back the oldest known datings of this geologic member, close to c. 254,000 BP (MIS-8). The topography at the Reclau site favoured the creation of cavities and rock shelters whose height may have exceeded 12 metres and whose length was about 18 metres, as in Arbreda Cave (Soler & Soler, 2016). Until now, the caves have undergone several transformations that have changed their appearance in comparison with the original morphology. On the one hand, karstification processes, secondary travertine deposits and recrystallizations have helped to remodel the geomorphology of the place. On the other hand, roof collapses and detrital sediment inputs have filled the ancient empty spaces (Brusi et al., 2005).

Josep Maria Corominas first became involved in the archaeological works of Arbreda in collaboration with Josep Canal, José M. de Bedoya, Miquel Oliva and Pere Comas. In 1972, he started a 9-metre deep survey (called Alpha Sector) that revealed a long prehistoric stratigraphy. Since 1975, a team led by Narcís Soler has been following up on previous works by applying Laplace’s method and enlarging the surface excavated by Corominas.

Arbreda CaveTOP

Arbreda Cave contains the largest and most detailed stratigraphy of the Reclau site. Its chronology shows a sequence from the end of the Middle Pleistocene to the Holocene. In the Pleistocene stratigraphy, fourteen archaeopaleontological levels have been identified and partially excavated (Figure 2).

Figure 2.—Section of the Arbreda site (2/3) with the indication of all known archaeological levels. Coloured points represent objects recovered from the archaeological units. Each level is represented by one colour. Datings of table 1 are indicated.

 

Neanderthal hunter-gatherers used this cavity for more than 100,000 years during the classic Mousterian until their disappearance, as attested by five Châtelperronian points discovered at the top of the final Mousterian (level I). At this point, they were suddenly replaced by modern anatomical humans (Bischoff et al., 1989; Soler & Maroto, 1990), even if recent studies point to a rejuvenation of the Archaic Aurignacian level H (Wood et al., 2014). This human replacement is documented by a cultural change in lithic technology, bone industry and exploitation of allochthonous raw materials (Maroto et al., 1996; Ortega, 2002; Ortega et al., 2005). Not only did Neanderthal replacement take place, big carnivore occupations also greatly decreased or even disappeared from the fossil record (Maroto et al., 2001). Level G, with a chronology attributed to the Evolved Aurignacian, is the most impressive and the most intensively occupied layer, where a hearth and an adjacent cooking basin have been documented (Soler & Maroto, 1987). This level, dated at c. 32 ka BP (Soler et al., 2014a), also contained a human molar germ, one of the most ancient anatomically modern human remains known in the Iberian Peninsula. Subsequently, human groups frequented the cavity during the Gravettian (levels D, E, F) and Solutrean (levels B, C) periods. Between the Final Gravettian and Solutrean periods, cold-adapted faunas such as musk-ox and reindeer appear on occasion, which might suggest the expansion of cold environmental contexts such as Heinrich Stadial 2 and the Last Glacial Maximum (Estévez, 1977; Estévez, 1978). Finally, at the end of the Upper Palaeolithic, scarce human occupations are grouped under the name of post-Solutrean (level A) (Soler et al., 2014a), although recent excavations have accumulated evidence for short Magdalenian occupations that should be now specified by radiocarbon dating.

Table 1.—Chronological limits known for level J. We can use them as ante quem (from upperlying level, I) and post quem (from underlying level, K) references for the deposition of level J.
Level Reference Lab code Method Context Profundity Support Date (BP) Error
I (Final Mousterian) Wood et al., 2014 OxA-21702 Ultrafiltered collagen 14C A5 EA112 -5.57 m Bone 44,400 1,900
K (Mousterian) Ajaja, 1994 879 234U/230Th B1R53 H38 -7.50 m Bone 71,000 4,000

Archaeopalaeontological context of level JTOP

Level J has not been well dated with radiometric methods, although an abundant classic Mousterian lithic industry has been recognized (Soler et al., 2014a). Because the top of level I corresponds to a final Mousterian dated in c. 40,000 BP (Maroto et al., 1996; Maroto et al., 2012; Wood et al., 2014), level J’s Mousterian should exceed the 14C limit. Up to now, neither U-Th nor OSL dating has been possible or has provided reliable results. Below that, level K is another poorly known Mousterian layer since it has been only excavated in the Alfa sector, which is a very little surface area with respect to the entire archaeological site. Nonetheless, in his PhD project, Omar Ajaja (1994) dated level K (Mousterian) using the U-Th method and obtained results between c. 80 and 70 ka BP in the most reliable samples (Figure 2; Table 1).

A clear stratigraphic disconformity isolates level J from level I and tells us about a (maybe relatively prolonged) period when erosive agents affected the filling of Arbreda Cave. Kehl et al. (2014) named level J layer B.2.1.1 in sedimentological terminology, in accordance with the high contents of medium and coarse sand grains accumulated inside the cave by fluvial processes. For example, a beaver (Castor fiber) molar from the same level J suggests that a humid fluvial ecosystem was present near the site (Soler et al., 2014b; Cuenca-Bescós et al., 2017). Some parts of J are also characterized by notable amounts of phosphates, whose origin is related to zoogenic inputs.

The most represented species is the cave bear (Ursus spelaeus). Modern excavations have unearthed nearly 1,300 remains of this animal only from this level (Soler et al., 2014b). For thousands of years, Arbreda Cave served bears as a den, in alternation with human occupations. Other identified carnivorous species are the spotted hyena (Crocuta crocuta) and the wolf (Canis lupus), whose remains are absolutely insignificant in terms of percentage when compared to the cave bear (Table 2).

Table 2.—Level J large mammals and their NISP (Number of Identified Specimens) significance calculated upon situated objects.
Species NISP
Artiodactyla
Bos primigenius
Capra pyrenaica
Cervus elaphus
15
5
50
Perissodactyla
Equus ferus
Equus hydruntinus
14
1
Proboscidea
Mammuthus primigenius
1
Carnivora
Canis lupus
Crocuta crocuta
Ursus spelaeus
Vulpes vulpes
8
7
1268
1
Lagomorpha
Lepus europaeus
Oryctolagus cuniculus
7
132
Rodentia
Castor fiber
1
Primates
Homo neanderthalensis
1

The activity of bears in elaborating hibernation beds has probably mixed remains of Mousterian hunter-gatherer short-term stays, and it might also has destroyed archaeological structures like hearths and others, which could never have been documented by excavation.

Nonetheless, abundant lithic tools have been recovered. Among them, scrapers and denticulates constitute the majority of the retouched flakes. Human groups usually selected local and nearby (< 5 km) raw materials, like quartz and quartzite, to prepare these kinds of tools. Anthropogenic damage to faunal bones has been identified, but in scarce proportions. The existence of some ungulate species is basically confirmed by teeth remains, from both the Artiodactyla and Perissodactyla orders (Bos primigenius, Capra pyrenaica, Cervus elaphus, Equus ferus and Equus hydruntinus). From the same level comes a Homo neanderthalensis premolar excavated in 2011, close to the piece that we present in this paper (Soler et al., 2012; Soler et al., 2014a).

Materials and methodsTOP

Fieldwork was carried out using standard archaeological methods. The surface of the site was divided into one-metre squares and finds were plotted three dimensionally. Identified bones, fragments of unidentified bones (>3 cm), stone tools and other lithic fragments (>1 cm) were mapped in situ prior to removal. Sediments were washed and sieved using 5, 1 and 0.5 mm mesh screens.

Arbreda Cave is divided into four sectors as a result of the history of work at the site: Alfa Sector, Beta Sector, Beta East Sector and Gamma Sector. Beta Sector has been excavated in two phases, from 1975 to 1987 and from 1996 until the present time. It has a surface of approximately 20 m2 and a long archaeo-stratigraphic record, from the Holocene to the Mousterian. The documentation taken in the field work is introduced in a data base and a GIS is used to create virtual models in 2D or 3D that help track the archaeological levels.

The elephantid remain analysed in this study was found previously by researchers of Arbreda Cave team in 2011 in square C5 (Beta Sector) nearly 6.75 metres deep.

Terminology of the morphological description follows Maglio (1973). Upper premolars are indicated by upper-case letters, lower ones by lower-case. The single most anterior and posterior plates, which are not fully attached to the root (talons/talonids), are indicated as ‘x’. Laws’ nomenclature for elephantid teeth and his age classes are also used (Laws, 1966).

To provide a quantitative and biometric description, we followed criteria detailed in Maglio (1973) and Lister (1996). Length has been taken parallel to the occlusal surface (A of Maglio). Width has been taken in plate 5 and height in plate 6. Because of the curvature of the dental piece, lamellar frequency is the average between those values taken from lingual and buccal sides. A sliding calliper in millimetres was used to take all measurements.

ResultsTOP

Systematic palaeontology and morphometric description

Class MAMMALIA Linnaeus, 1756

Order PROBOSCIDEA Illiger, 1811

Superfamily ELEPHANTOIDEA Gray, 1821

Family ELEPHANTIDAE Gray, 1821

Genus Mammuthus Brookes, 1826

Species M. primigenius Blumenbach, 1799

Figure 3

Figure 3.—Views of the C5 EC135 2302. Buccal view, the arrow points to the mesial end (A); lingual view, the arrow also points to the mesial end (B); occlusal view, the arrow points to the mesial end and then towards the buccal side (C). Abbreviations: pt, plates; x, talonid.

 

Specimen C5 EC135 2302 is identified as a left lower dp3, which is a M2 in the Laws system. This proboscidean tooth is almost complete, even though it shows only the crown plates and interplate cement. Although all plates are already fused, which means that the tooth was fully grown, it preserves only a thin layer of primary dentine beneath the enamel-dentine junction. All plates are eroded on their lateral sides (lingual and buccal) because no enamel is preserved at the lateral edges of the plates and erosion has exposed the dentine. All interplate gaps were filled with cement with the sole exception of the last gap, where the tooth was slightly broken. The lack of any fractured surface eliminates the possibility that the root disappeared due to biostratinomic factors. So, it is clear that the line in the base of the tooth reflects the smooth base of the crown.

This piece possesses eight plates, but the first and the last plates can be considered talonids. The first mesial plate is the most worn out, even though it seems to have a less prominent length than the others because the mesial enamel of this plate has also disappeared. Although we can report its existence, the distal plate has been partially broken. In conclusion, we can describe these two as talonids and the plate formula is x-6-x.

Metrically, Arbreda’s tooth has reduced dimensions, which is demonstrated by its position in the lower range dimension values of length of M. primigenius dp3 specimens shown in Table 3. Moreover, it has the lowest width value of the sample, which is due to erosion suffered by the tooth. The result of the lamellar frequency calculation is close to other Mammuthus primigenius remains. Other metric values such as height, enamel thickness or hypsodonty index match well with typical Mammuthus primigenius values.

Table 3.—Comparison values of proboscidean dP3 and dp3 from different Eurasian localities. Abbreviations: PN, plate number; L, crown length; W, crown width; H, crown height; LF, lamellar frequency; ET, enamel thickness; HI, hypsodonty index.
Chronology Locality & Reference Species Anatomy PN L W H LF ET HI
Late Pleistocene Arbreda (Spain)
This paper
M. primigenius dp3 x-6-x 44.7 24.8 24.5 15.2 1.2 0.9
  Goyet (Belgium)
Comeyne, 2013
M. primigenius dP3 7 50.5 18.4 25.9 14 - -
      dp3 7-8 55-61.6 33.7-34.6 31.8-39.1 14-16 - -
  Zemst IIB (Belgium)
Germonpré, 1993
M. primigenius dp3 7-9 44.5-60.0 29.3-35.2 31.6-37.2 14-16 0.7-0.9 -
  Krems-Wachtberg
(Austria)
Fladerer, 2003
M primigenius dp3 x-7-x 57.5 32.8 c. 40 - 0.4-0.6 -
      dp3 x-7-xx 62 35.5 c. 33 - 0.7-1.0 -
  Berelekh (Russia)
Urbanas, 1980
M. primigenius dP3 8-10 41-61 33-37 - - 0.7-1,3 -
      dp3 9-10 48.5-54 32-37.2 - - 0.7-1.0 -
  Eliseevichi (Russia)
Urbanas, 1980
M. primigenius dP3 7-10 53-56.5 35.5-40 - - 0.9-1.2 -
      dp3 7 52.3 34 - - 0.9 -
  Oimiakon (Russia)
Maschenko et al., 2013
M. primigenius dp3 8 56-57 35 - - 1.3 -
  Sevsk (Russia)
Maschenko et al., 2006
M. primigenius dP3 7-8 52-57 32-35 - - 1.2 -
  Shanshenmiaozui (China)
Tong & Chen, 2016
M. primigenius dP3 x-7-x 55.2 34.7 - 12.7 - -
  Central Russia
Maschenko, 2002
M. primigenius dP3 7-8 54-67 32-43 - 10.4-14.5 0.5-0.8 -
  Central Russia
Maschenko et al., 2005
M. primigenius dp3 7-9 43.5-66 28.5-37 - - 0.5-1.0 -
  Eastern Siberia
Maschenko et al., 2005
M. primigenius dP3 7-9 53-56.5 28-40 - - 0.7-1.3 -
  Eastern Siberia
Maschenko et al., 2005
M. primigenius dp3 7-10 28.5-37 26-36 - - 0.7-1.0 -
  Taubade
(Germany)
Guenther, 1977
P. antiquus dP3 x-6-x 60-82 37-43 - - - -
Early Pleistocene Dursunlu (Turkey)
Albayrak & Lister, 2012
Mammuthus sp. dp3 x-5-x 57.2 36.5 32.8 10.4 1.38 0.9

The degree of wear matches rather well with group III of Laws (1966). Generally, wear is not heavy and it is deeper in the first three mesial plates, shallower in the following two plates, and incipient in the sixth and seventh plates. We cannot know whether the distal talonid was worn or not because of the fragmentation. However, enamel examination tells us that the tooth had reached the full growth stage and the final fusion of all plates, which is said to take place in Laws’ group IV.

DiscussionTOP

Deciduous Palaeoloxodon antiquus teeth are not abundant in the fossil record, but Guenther (1977) presents dP3 measurements for this species, which is larger than Mammuthus primigenius. Palaeoloxodon antiquus upper dP3 are larger than those of Mammuthus primigenius, which are larger than lower teeth of the same species. In the absence of published straight-tusked elephant dp3 samples, we expected that their dimensions would be higher than those M. primigenius dp3 in correspondence with the upper teeth of the former proboscidean. So, we defend that the Arbreda tooth, which can only be fitted with Mammuthus primigenius dp3, must belong to this species. Maschenko (2002) pointed to a lack of correlation between second generation molar dimensions and position in either the maxillar or the jaw. In line with studies by Haynes (1991), who said that maxillary teeth are wider, higher and larger than corresponding mandibular teeth, there is a trend, seen in our sample, where the lower values (< 50 mm) for lengths correspond to lower teeth (with the exception of Berelekh) and the higher values for widths to upper ones (Table 3).

Soler et al. (2012) declared that C5 EC135 2302 was a germ tooth because it lacked roots. We argue against this hypothesis because it is incoherent with the studies of the mammoth tooth ontogenesis. Classical studies (Haynes, 1991; Maschenko, 2002) and new technologies applied to mummified woolly mammoths (Rountrey et al., 2012) have shown that root genesis started before the cementum covering and the presence of wear. The possibility of a germ tooth must be rejected. Equally, the phase of wear and its corresponding age range are not consistent with a possible root resorption case, especially when the distal part of the occlusal surface had almost not been worn.

Level J has a singular geochemical footprint due to the increase of phosphorous levels below 6.3 meters dept (Kabiri, 1993). This enrichment is related to biogenic inputs like bat guano or the urine of larger mammals, such as cave bears or hyaenas. The phosphorous alterations have dissolved big travertines and affected faunal and lithic archaeological remains (Soler et al., 2010). Therefore, it is possible that a low pH level may have produced a differential conservation process and the root dentine could have been dissolved. For example, the presence of authigenic phosphates, like crandallite, seems to indicate lower values of pH in some moments of the lower Upper Pleistocene sequence, including level J (Kehl et al., 2014). This phenomenon has been observed in the aristocratic Gallic burial site in Clémency (Luxembourg), where only the enamel of the suid teeth have been conserved (Méniel, 1993). We argue that further taphonomic analysis must be done in this line of research.

The Arbreda tooth came from a young animal estimated to be between 1 and 2 years old. The tooth falls between groups III (because of the degree of wear) and IV (because of the full grown crown) of Laws (Metcalfe et al., 2010). Laws (1966) assigns age class III with an average age of about 1 year (African elephant years), at the same time that Craig correlates it with approximately 1.7 years (Haynes, 1991). Maschenko (2002) published evidence that suggested an eruption and wear of woolly mammoth teeth earlier than Loxodonta africana and Elephas maximus. This author claimed that dp3 are completely formed at between eleven to fourteen months and that all plates have experienced wear. So, we attempt to establish an age of approximately one to one year and a half. In addition, Arbreda seems to be close to ZIN 28284 (1) dp3 of Kostionki 14, which is 10–12 months old (Maschenko, 2002), or with MK 1027 dp3 of Krems-Wachtberg, which is 6–12 months old (Fladerer, 2003). We suggest that the age of C5 EC135 2302 is around one year old, perhaps one year to one and a half at the most. It is possible that in that stage, dp2 was still present in the dental series showing deep wear, at the same time that dp4 was erupting, but was not worn Haynes (1991) uses the term Stage B to describe an age range where dp2 and dp3 are both worn.

Although it is evident that this piece had been brought inside the cave by some biogenic agent (carnivore-scavenger), we cannot ascertain if it was a carnivore (hyaena-wolf) or a human (Neanderthal). Recent studies situate Ursus spelaeus at the herbivore level in the trophic net (Münzel et al., 2014). Despite the abundance of ursine remains, it is impossible to correlate this animal with carnivore-scavenger behaviours. Moreover, it has been demonstrated that brown bears (Ursus arctos) do not transport carcasses into caves and do not generate skeletal accumulations in their dens (Sala & Arsuaga, 2013). More archaeological interventions in this level are needed to solve the taphonomic questions. In any case, mammoths were present in the palaeoenvironment at the time of level J’s depositional context, given that Neanderthal humans had not developed the long-distance provision nets, like those that anatomically modern humans would develop in the Upper Palaeolithic (Ortega, 2002).

The increasing aridity, cooling and continentality during the late Middle Pleistocene and Late Pleistocene allowed the development of a new biome (the mammoth-steppe or tundra-steppe) which has no modern large-scale analogue. This biome expanded its geographical range in every glacial period and appeared for the first time in MIS-12, between 480 and 400 ka BP. The reduction of the taiga forest belt pushed the origin of Artic faunas further south and south-west in the same way that species of steppe origin dispersed into northern and western regions of the Palaearctic. The mixing of these faunas with distinct environmental origins created a characteristic assemblage called the Mammuthus-Coelodonta faunal complex. Together with the woolly mammoth and the woolly rhinoceros, the most representative genera were Ovibos, Rangifer, Saiga, Alopex, Bison and Equus (Kahlke, 2014; Guthrie, 1982). In contrast, faunal compositions in which herbivores of temperate character were the most representative were dominant during the Last Glacial Maximum in the Iberian Peninsula. In these assemblages, cold-adapted faunas occur in low frequencies, mainly in the regions of Cantabria and Catalonia. This demonstrates the transitional character that these areas had during MIS-3, between the Eurasian steppe biome and the Iberian temperate refuge (Álvarez-Lao & García, 2012; Álvarez-Lao et al., 2017).

Although level J’s chronology is not known precisely enough, this article confirms a very complex outlook for migration cycles of cold-adapted faunas in the Iberian Peninsula. As Álvarez-Lao & Garcia (2011) have argued, in the late Middle Pleistocene and Upper Pleistocene, cold-adapted faunas spread into the Iberian Peninsula by crossing over two points in the west and in the east of the Pyrenees. These authors established three wide-ranging, scattered episodes during which large cold-adapted mammals entered the Iberian Peninsula: between 200 and 100 ka BP and frequent occurrences between 42 and 31 cal ka BP (MIS-3) and between 25 and 18 cal ka BP (MIS-2). Arbreda cannot be situated within any of these ranges because level J has a chronology roughly between 70 ka BP and 44 ka BP. If the upper part of level I indicates an age of c. 45–41 cal ka BP (López-García et al., 2015), we must accept an older age for level J, with chronologies in early MIS-3 or MIS-4. Precisely, the oldest occurrence of the second Álvarez-Lao & Garcia episode is the dP2 of Unit III of Teixoneres Cave, which has a chronology from more than 51,000 14C BP to 44,210 cal BP (Talamo et al., 2016). Evidence from Arbreda and Teixoneres pushes back the initial chronology of the second dispersal episode.

In level J of Arbreda, the dominance of red deer (Cervus elaphus) among herbivores can indicate a forested environment, even though it has been demonstrated that the red deer is a very adaptable eurythermic animal (Altuna, 1995). The auroch (Bos primigenius) prefers landscapes with sparse forests and forest steppes, wetlands and proximity to water courses (Auguste & Patou-Mathis, 1994). Although Equus sp. is able to live in varied conditions, its presence is mostly indicative of open meadows in proximity of the site (Arribas, 2004). Nowadays, beavers (Castor fiber) live in riverbanks and lake shores surrounded by forested areas (Cuenca-Bescós et al., 2017). So, the fauna association suggests a mosaic landscape with a high number of forested environments and a humid atmosphere around the cave, but also open landscapes not far from the site. Like many Iberian woolly mammoth assemblages, level J shows a dominance of temperate species and a low percentage of cold taxa, like M. primigenius. This assemblage does not reflect the typical composition of the Eurasian mammoth fauna and supports the idea of occasional arrivals of mammoths in the Iberian Peninsula.

ConclusionsTOP

The comparative morphometric study confirms that the C5 EC135 2302 molar belongs to a mammoth and not to a straight-tusked elephant. The archaeological and chronological context leaves few doubts that we are talking about a tooth of a woolly mammoth calf (Mammuthus primigenius).

There is evidence of this species in the Iberian Peninsula from the late Middle to early Late Pleistocene; however, most of the occurrences took place in MIS-3 and MIS-2. The Arbreda tooth demonstrates a complex trend of mammoth distribution on the south side of the Pyrenees in the Late Pleistocene. The stratigraphic position, uranium-thorium datings at the base of the known stratigraphic column and the chronology of the upper part of level I suggest an occurrence out of the three-episode proposal published by Álvarez-Lao & García (2011) and close to the Teixoneres Unit III occurrence (Álvarez-Lao et al., 2017). Thus, the second dispersal episode of woolly mammoths in the Iberian Peninsula could have started earlier than previously thought, at least in the early MIS-3.

The palaeoenvironmental context is not a typical cold-adapted fauna association like those from Western Central Europe, dominated by reindeer. It is similar to the Iberian assemblages that were developed in a mosaic landscape where the proximity of different ecosystems offered the possibility of cohabitation in a reduced zone of fauna species that had different habitat preferences.

ACKNOWLEDGEMENTSTOP

We wish to thank the curator of the Museu Arqueològic Comarcal de Banyoles, Andrea Ferrer, for her support. We also want to thank Dr. Diego Álvarez-Lao, from the Universidad de Oviedo, and Dr. Jordi Rosell, from the Institut Català de Paleoecologia Humana i Evolució Social (IPHES) and Universitat Rovira Virgili (URV), for the correction of the manuscript.

Funding for this research has come from the Ministerio de Educación y Ciencia for project HAR 2010–19120 “El Paleolítico medio de la cueva de la Arbreda”. A FI grant from the Generalitat de Catalunya has funded I. Rufí’s research.

 

ReferencesTOP


Ajaja, O. (1994). Datation de quelques sites moustériens de Catalogne et du Languedoc par la méthode U-Th. Comparaisons avec la méthode de ESR. Thèse de doctorat, Institut de Paléontologie Humaine, 149 pp.
Albayrak, E. & Lister, A.M. (2012). Dental remains of fossil elephants from Turkey. Quaternary International, 276–277: 198–211. https://doi.org/10.1016/j.quaint.2011.05.042
Alsius, P. (1915). El magdelenense en la provincia de Gerona (Soler, N., Ed.), Documenta Universitaria, Girona, 431 pp.
Altuna, J. (1995). Faunas de mamíferos y cambios ambientales durante el Tardiglaciar cantábrico. In: El final del Paleolítico Cantábrico (Moure, A. & Gonzalez, C., Eds.), Universidad de Cantabria, Santander, 79–117.
Álvarez-Lao, D.J.; Kahlke, R.-D.; García, N. & Mol, D. (2009). The Padul mammoth finds – On the southernmost record of Mammuthus primigenius in Europe and its southern spread during the Late Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 278: 57–70. https://doi.org/10.1016/j.palaeo.2009.04.011
Álvarez-Lao, D.J. & García, N. (2010). Chronological distribution of Pleistocene cold-adapted large mammal faunas in the Iberian Peninsula. Quaternary International, 212: 120–128. https://doi.org/10.1016/j.quaint.2009.02.029
Álvarez-Lao, D.J. & García, N. (2011). Geographical distribution of Pleistocene cold-adapted large mammal faunas in the Iberian Peninsula. Quaternary International, 233: 159–170. https://doi.org/10.1016/j.quaint.2010.04.017
Álvarez-Lao, D.J.& García, N. (2012). Comparative revision of the Iberian woolly mammoth (Mammuthus primigenius) record into a European context. Quaternary Science Reviews, 32: 64–74. https://doi.org/10.1016/j.quascirev.2011.11.004
Álvarez-Lao, D.J.; Rivals, F.; Sánchez-Hernández, C.; Blasco, R. & Rosell, J. (2017). Ungulates from Teixoneres Cave (Moià, Barcelona, Spain): Presence of cold-adapted elements in NE Iberia during the MIS3. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 287–302. https://doi.org/10.1016/j.palaeo.2016.11.040
Arribas, O. (2004). Fauna y paisaje de los Pirineos en la Era glaciar. Lynx, Barcelona, 540 pp.
Auguste, P. & Patou-Mathis, M. (1994). L’aurochs au Paléolithique. In: Aurochs: Le retour. Aurochs, vaches & autres bovins de la préhistoire à nos jours, Centre Jurassien du Patrimoine, Lons-Le-Saunier, 13–26.
Bischoff, J.L.; Soler, N.; Maroto, J. & Julià, R. (1989). Abrupt mousterian/aurignacian boundary at c. 40 ka bp: Accelerator 14C dates from l’Arbreda cave (Catalunya, Spain). Journal of Archaeological Science, 16: 563–576. https://doi.org/10.1016/0305-4403(89)90022-8
Brusi, D. (1996). Els travertins de la depressió de Banyoles. In: Geologia de la conca lacustre de Banyoles-Besalú (Maroto, J. & Pallí, L., Eds.), Quaderns del Centre d’Estudis Comarcals de Banyoles vol. 17, Banyoles, 71–87.
Brusi, D.; Linares, R.; Maroto, J.; Pallí, L.; Pujadas, R.; Ramió, S.; Roqué, C. & Soler, N. (2005). Las cuevas prehistóricas de Serinyà (Pla de l’Estany, Girona). Boletín Geológico y Minero, 116 (3): 247–256.
Cabrera, À. (1919). Mamíferos del yacimiento solutrense de San Julián de Ramis. Treballs del Museu de Ciències Naturals de Barcelona, Vol. VII (1): 5–21.
Comeyne, A. (2013). Taphonomy, osteometry and archaeozoology of the Pleistocene herbivores from the third horizon of the Goyet cave, Belgium. Scriptie voorgelgerd tot het behalen van de graad Van Master of Science in de geologie, Universiteit Gent, 171 pp.
Cuenca-Bescós, G.; Rosell, J.; Morcillo-Amo, Á.; Galindo-Pellicena, M.Á.; Santos, E. & Moya, R. (2017). Beavers (Castoridae, Rodentia, Mammalia) from the Quaternari sites of the Sierra de Atapuerca, in Burgos, Spain. Quaternary International, 433: 263–277. https://doi.org/10.1016/j.quaint.2015.10.072
Daura, J.; Sanz, M.; García, N.; Allué, E.; Vaquero, M.; Fierro, E.; Carrión, J.S.; López-García, J.M.; Blain, H.A.; Sánchez-Marco, A.; Valls, C.; Albert, R.M.; Fornós, J.J.; Julià, R.; Fullola, J.M. & Zilhão, J. (2013). Terrasses de la Riera dels Canyars (Gavà, Barcelona): the landscape of Heinrich Stadial 4 north of the “Ebro frontier” and implications for modern human dispersal into Iberia. Quaternary Science Reviews, 60: 26–48. https://doi.org/10.1016/j.quascirev.2012.10.042
Estévez, J. (1977). Un percutor solutrense en asta de reno hallado en Serinyà (Girona). Pyrenae, 13–14: 301–306.
Estévez, J. (1978). Primer hallazgo del buey almizclado (Ovisbos moschatus, Zimmermann) en el pleistoceno peninsular. Acta Geológica Hispánica, XIII (2): 59–60.
Estévez, J. (1979). La fauna del pleistoceno de Catalunya. Tesi doctoral, Universitat de Barcelona, 522 pp.
Fladerer, F.A. (2003). A calf-dominated mammoth age profile from the 27kyBP stadial Krems-Wachtberg site in the middle Danube valley. In: Advances in mammoth research. Proceedings of the Second International Mammoth Conference, Rotterdam, May 16–20 1999 (Reumer, J.W.F., De Vos, J. & Mol, D., Eds.). Deinsea, 9: 135–158.
Galobart, À., Maroto, J., Ros, X., 1996. Las faunas cuaternarias de mamíferos de la cuenca de Banyoles-Besalú (Girona). Revista Española de Paleontologia, Núm. Extraordinario, 248–255.
Germonpré, M. (1993). Osteometric data on Late Pleistocene mammals Flemish Valley Belgium. Studiedocumenten van het KBIN, 72: 1–135.
Guenther, E.W. (1977). Die Bachenzähne der Elefanten von Taubade bei Weimar. Quatärpalaontologie, 2: 265–305.
Guthrie, R.D. (1982). Mammals of the mammtoh steppe as palaeonviromental indicators. In: Paleoecology of Beringia (Hopkins, D.M.; Matthews jr, J.V.; Schweger, C.E. & Young, S.B., Eds.), Academic Press, New York, 307–326. https://doi.org/10.1016/B978-0-12-355860-2.50030-2
Haynes, G. (1991). Mammoths, Mastodonts and Elephants: Biology, behavior, and the fossil record. Cambridge University Press, Cambridge, 413 pp.
Julià, R. (1980). La conca lacustre de Banyoles-Besalú. Monografies del Centre d’Estudis Comarcals de Banyoles, Banyoles, 187 pp.
Kabiri, L. (1993). Étude géologique des remplissages des Ramandils (Port-la-Nouvelle) et de l’Arbreda (Serinyà). Thèse de doctorat, Museum National d’Histoire Naturelle, Institut de Paléontologie Humaine, 210 pp.
Kahlke, R.-D. (2014). The origin of Eurasian Mammoth Faunas (Mammuthus-Coelodonta Faunal Complex). Quaternary Science Reviews, 96: 32–49. https://doi.org/10.1016/j.quascirev.2013.01.012
Kehl, M.; Eckmeier, E.; Franz, S.O.; Lehmkuhl, F.; Soler, J.; Soler, N.; Reicherter, K. & Weniger, G.-C. (2014). Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial. Climate of the Past, 10: 1673–1692. https://doi.org/10.5194/cp-10-1673-2014
Kurtén, B. (1968). Pleistocene mammals of Europe. Weidenfeld and Nicolson, London, 317 pp.
Laws, R.W. (1966). Age criteria for the African elephant, Loxodonta a. africana. East African Wildlife Journal, 4: 1–37. https://doi.org/10.1111/j.1365-2028.1966.tb00878.x
Lister, A. (1996). Evolution and taxonomy of Eurasian mammoths. In: The Proboscidea. Evolution and Palaeoecology of Elephants and their Relatives (Shoshani, J. & Tassy, P., Eds.), Oxford University Press, Oxford, New York, Toronto, 203–213.
López-García, J.M.; Soler, N.; Maroto, J.; Soler, J.; Alcalde, G.; Galobart, À.; Bennàsar, M. & Burjachs, F. (2015). Palaeoenvironmental and palaeoclimatic reconstruction of the Latest Pleistocene of L’Arbreda Cave (Serinyà, Girona, northeastern Iberia) inferred from the small-mammal (insectivore and rodent) assemblages. Palaeogeography, palaeoclimatology, palaeoecology, 435: 244–253. https://doi.org/10.1016/j.palaeo.2015.06.022
Maglio, V.J. (1973). Origin and evolution of the Elephantidae. Transactions of the American Philosophical Society, 63: 1–149. https://doi.org/10.2307/1006229
Manzano, I.; Expósito, A.; Pérez-González, A.; Soto, E.; Sesé, C.; Yravedra, J.; Ruiz Zapata, B.; Millán, A.; Benéitez, P.; Torres, T.; Mondéjar, J.A.; Zarco, E.; Sánchez, H.; Citores, A.; Ramos, M. & Rodríguez, A. (2011). El yacimiento arqueopaleontológico de EDAR Culebro 1 (Estación de la depuradora de Aguas Residuales de la cuenca baja del arroyo Culebro). In: Actas de las Quintas Jornadas de Patrimonio Arqueológico de la Comunidad de Madrid (2008), Consejería de la Presidencia, Justicia y Portavocía del Gobierno-D.G. de Patrimonio Cultural, Madrid, 213–224.
Maroto, J. (2014). El conjunto del Reclau Viver. In: Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y del Estrecho de Gibraltar: Estado actual del conocimiento del registro arqueológico (Sala, R., Ed.), Universidad de Burgos, Fundación Atapuerca, Burgos, 246–255.
Maroto, J.; Soler, N. & Fullola, J.M. (1996). Cultural change between middle and upper palaeolithic in Catalonia. In: The last neandertals, the first anatomically modern humans: A tale about human diversity. Cultural change and human evolution: The crisis at 40 ka BP (Carbonell, E. & Vaquero, M., Eds.), Universitat Rovira i Virgili, Tarragona, 219–250.
Maroto, J.; Ramió, S.; Solés, A. & Soler, N. (2001). La davallada de l’ós de les cavernes durant el plistocè superior. L’exemple del nord-est de Catalunya. Cypsela, 13: 137–141.
Maroto, J.; Julià, R.; López-García, J.M. & Blain, H.-A., (2012). Chronological and environmental context of the middle pleistocene human tooth from Mollet cave (Serinyà, NE Iberian Peninsula). Journal of Human Evolution, 62: 655–663. https://doi.org/10.1016/j.jhevol.2012.01.009
Maschenko, E.V. (2002). Individual development, biology and evolution of the woolly mammoth. Cranium, 19: 4–120.
Maschenko, E.V.; Tikhonov, A.N. & MacPhee, R.D.E. (2005). Mammoth calf from Bolshoi Lyakhovskii Island. Russian Journal of Theriology, 4 (1): 79–88. https://doi.org/10.15298/rusjtheriol.04.1.06
Maschenko, E.V.; Gablina, S.S.; Tesakov, A.S. & Simakova, A.N. (2006). The Sevsk woolly mammoth (Mammuthus primigenus) site in Russia: Taphonomic, biological and behavioral interpretations. Quaternary International, 142–143: 147–165. https://doi.org/10.1016/j.quaint.2005.03.013
Maschenko, E.V.; Boeskorov, G.G. & Baranov, V.A. (2013). Morphology of a Mammoth Calf (Mammuthus primigenus) from Ol’chan (Oimiakon, Yakutia). Paleontological Journal, 47 (4): 425–438. https://doi.org/10.1134/S0031030113040096
Mazo, A.; Galobart, À. & Colomer, F. (2003). Mammuthus meridionalis (Nesti, 1825) de Incarcal (Girona, NE de la Península Ibérica): descripción e identificación. Paleontologia i evolució, 34: 185–209.
Méniel, P. (1993). Les restes animaux de l’oppidum de Titelberg (Luxembourg) de La Tène finale au Gallo-romain précoce. Archaeologia Mosellana, 2: 81–406,
Metcalfe, J.Z.; Longstaffe, F.J. & Zazula, G.D. (2010). Nursing, weanng, and tooth development in woolly mammoths from Old Crow, Yukon, Canada: Implications for Pleistocene extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 298: 257–270. https://doi.org/10.1016/j.palaeo.2010.09.032
Mol, D.; Vos, J. de & Plicht, J. van der (2007). The presence and extinction of Elephas antiquus Falconer and Cautley, 1847, in Europe. Quaternary International, 169–170: 149–153. https://doi.org/10.1016/j.quaint.2006.06.002
Münzel, S.; Rivals, F.; Pacher, M.; Doppes, D.; Rabeder, G.; Conard, N.J. & Bocherens, H. (2014). Behavioural ecology of Late Pleistocene bears (Ursus spelaeus, Ursus ingressus): Insight from stable isotopes (C,N,O) and tooth microwear. Quaternary International, 339–340: 148–163. https://doi.org/10.1016/j.quaint.2013.10.020
Ortega, D. (2002). Mobilitat i desplaçaments dels grups caçadors-recol·lectors a inicis del paleolític superior a la regió pirinenca oriental. Cypsela, 14: 11–26.
Ortega, D.; Soler, N. & Maroto, J. (2005). La production des lamelles pendant l’aurignacien archaïque dans la grotte de l’Arbreda: organisation de la production, variabilité des méthodes et des objectifs. In: Productions lamellaires attribuées à l’Aurignacien: Chaînes opératoires et perspectives technoculturelles (XIVe Congrès de l’UISPP, Liège 2–8 Septembre 2001). ArchéoLogiques, 1: 359–373.
Pallí, L. (1972). Estratigrafia del paleógeno del Empordà y zonas limítrofes. Publicaciones de geología, Universidad Autónoma de Barcelona, Bellaterra, 328 pp.
Roqué, C.; Pallí, L.; Capellà, I.; Linares, R. & Brusi, D. (1999). Els esfondraments per carstificació al terme municipal de Besalú. La Punxa, 28: 42–53.
Ros-Montoya, S. (2010). Los proboscídeos del plio-pleistoceno de las cuencas de Guadix-Baza y Granada. Tesis doctoral, Universidad de Granada, 403 pp.
Rosell, J.; Cáceres, I.; Blasco, R.; Bennàsar, M.; Bravo, P.; Campeny, G.; Esteban-Nadal, M.; Fernández-Laso, M.C.; Gabucio, M.J.; Huguet, R.; Ibáñez, N.; Martín, P.; Rivals, F.; Rodríguez-Hidalgo, A. & Saladié, P. (2012). A zooarchaeological contribution to establish occupational patterns at Level J of Abric Romaní (Barcelona, Spain). Quaternary International, 247: 69–84. https://doi.org/10.1016/j.quaint.2011.01.020
Rountrey, A.N.; Fisher, D.C.; Tikhonov, A.N.; Kosintev, P.A.; Lazarez, P.A.; Boeskorov, G. & Buigues, B. (2012). Early tooth development, gestation, and season of birth in mammoths. Quaternary International, 225: 196–205. https://doi.org/10.1016/j.quaint.2011.06.006
Sala, N. & Arsuaga, J.L. (2013). Taphonomic studies with wild brown bears (Ursus arctos) in the mountains of northern Spain. Journal of Archaeological Science, 40: 1389–1396. https://doi.org/10.1016/j.jas.2012.10.018
Sánchez Goñi, M.F. & Harrison, S.P. (2010). Millenial-scale climatic variability and vegetation changes during the last glacial: concepts and terminology. Quaternary Science Reviews, 24: 1637–1653.
Sanz, M. (1985). Estudi hidrogeològic de la conca Banyoles-Garrotxa. Quaderns del Centre d’Estudis Comarcals de Banyoles, 1980–1984: 171–250.
Sesé, C. & Soto, E. (2002). Vertebrados del Pleistoceno del Jarama y Manzanares. In: Bifaces y elefantes. La investigación del Paleolítico Inferior en Madrid (Panera, J. & Rubio, S., Eds.), Museo Arqueológico Nacional, Alcalá de Henares, 319–337.
Soler, J.; Soler, N.; Medina, B.; Romero, L.; Solés, A. & Niell, X. (2010). Les excavacions a la cova de l’Arbreda durant les campanyes de 2008 i 2009. In: X jornades d’arqueologia de les comarques de Girona (Grau, J. & Prados, A., Eds.), Museu etnològic del Montseny-La Gabella, Ajuntament d’Arbúcies, Arbúcies, 17–25.
Soler, J.; Soler, N.; Solés, A.; Niell, X.; Corominas, N. & Medina, B. (2012). Les excavacions a la cova de l’Arbreda (Serinyà) durant les campanyes de 2010 i 2011. In: XI jornades d’arqueologia de les comarques de Girona (Puig, A.M., Ed.), Departament de Cultura-Servei d’Arqueologia i Paleontologia, MAC-Girona, UdG, ICRPC, Ajuntament de Girona, Diputació de Girona, Girona, 47–58.
Soler, J.; Soler, N.; Solés, A. & Niell, X. (2014a). La cueva de la Arbreda del Paleolítico medio al Neolítico. In: Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y del Estrecho de Gibraltar: Estado actual del conocimiento del registro arqueológico (Sala, R., Ed.), Universidad de Burgos, Fundación Atapuerca, Burgos, 266–276.
Soler, J.; Soler, N.; Solés, A.; Niell, X.; Coromina, N. & Simon, J. (2014b). Les excavacions a la cova de l’Arbreda durant les campanyes de 2012 i 2013. In: XII jornades d’arqueologia de les comarques de Girona (Frigola, J., Ed.), Departament de Cultura, MAC-Girona, Departament d’Història i Història de l’Art de la UdG, Ajuntament de la comtal vila de Besalú, Besalú, 33–41.
Soler, N. (1997). La civilització solutriana a Catalunya. Annals de l’Institut d’Estudis Gironins, 36: 175–196.
Soler, N. (1999). Le paléolithique des grottes de Serinyà (Gérone, Catalogne, Espagne). In: Les faciès leptolithiques de nord-ouest méditerranéen: milieux naturels et culturels (Sacchi, D., Ed.), Société Préhistorique Française et Ministère de la Culture, Carcassonne, 195–228.
Soler, N. & Maroto, J. (1987). Els nivells d’ocupació del paleolític superior a la cova de l’Arbreda (Serinyà, Girona). Cypsela, VI: 221–228.
Soler, N. & Maroto, J. (1990). El final del paleolític mitjà i l’inici del paleolític superior a la cova de l’Arbreda (Serinyà). Cypsela, VIII: 7–13.
Soler, N. & Soler, J. (2016). The first Homo sapiens in Catalonia, hunters and gatherers from the old Upper Palaeolithic. Catalan Historical Review, 9: 9–23.
Solés, A. & Maroto, J. (2002). Els grans mamífers del pleistocè mitjà. In: Els vertebrats fòssils del Pla de l’Estany (Maroto, M.; Ramió, S. & Galobart, À., Eds.), Quaderns del Centre d’Estudis Comarcals de Banyoles vol. 23, Banyoles, 125–140.
Stuart, A. J. (2005). The extinction of woolly mammoth (Mammuthus primigenius) and straight-tusked elephant (Palaeoloxodon antiquus) in Europe. Quaternary International, 126–128: 171–177. https://doi.org/10.1016/j.quaint.2004.04.021
Talamo, S.; Blasco, R.; Rivals, F.; Picin, A.; Chacón, M.G.; Iriarte, E.; López-García, J.M.; Blain, H.-A.; Arilla, M.; Rufà, A.; Sánchez-Hernández, C.; Andrés, M.; Camarós, E.; Ballesteros, A.; Cebrià, A.; Rosell, J.; Hublin, J.-J. (2016). The radiocarbon approach to neanderthals in a carnivore den site: a well-defined chronology for Teixoneres Cave (Moià, Barcelona, Spain). Radiocarbon, 58: 247–265. https://doi.org/10.1017/RDC.2015.19
Tong, H.-W. & Chen, X. (2016). On newborn calf skulls of Early Pleistocene Mammuthus trogontherii from Shanshenmiaozui in Nihewan Basin, China. Quaternary International, 406: 57–69. https://doi.org/10.1016/j.quaint.2015.02.026
Urbanas, E.V. (1980). Zuby mamontov iz pozdnepaleoliticheskoy stoyanki sela Kostenki Voronezhskoy oblasti (Dentition of mammoth from the Kostenki Late Pleistocene site (Voronezh Region). In: Mlekopitayushchie Vostochnoy Evropy v Antropogene (Quaternary Mammals of the Eastern Europe) (Vereshchagin, N.K., Ed.), Trudy Zoologicheskogo Instituta vol. 93, Saint Petersburg, 81–90.
Wood, R.E.; Arrizabalaga, A.; Camps, M.; Fallon, S.; Iriarte-Chiapusso, M.-J.; Jones, R.; Maroto, J.; Rasilla, M. de la; Santamaría, D.; Soler, J.; Soler, N.; Villaluenga, A. & Higham, T.F.G. (2014). The chronology of the earliest upper palaeolithic in northern Iberia: New insights from l’Arbreda, Labeko Koba and La Viña. Journal of Human Evolution, 69: 91–109. https://doi.org/10.1016/j.jhevol.2013.12.017
Yravedra, J.; Panera, J.; Rubio-Jara, S.; Manzano, I.; Expósito, A.; Pérez-González, A.; Soto, E. & López-Recio, M. (2014). Neanderthal and Mammuthus interactions at EDAR Culebro 1 (Madrid, Spain). Journal of Archaeological Science, 42: 500–508. https://doi.org/10.1016/j.jas.2013.11.011