Palaeontological analyses across the Ediacaran-Cambrian boundary, Upper Corumbá Group, Brazil

Análisis paleontológicos a través límite Ediacárico-Cámbrico, Grupo Alto Corumbá, Brasil

R.R. Adôrno1,2, D.H.G. Walde1, D.A. Do Carmo1, M. Denezine1, I. Cortijo7, E.A.M. Sanchez3, T.C. Tobias1, G. Fazio1, L.V. Warren5, B.D. Erdtmann6, Y. Cai8, M. Giorgioni1, M.E.A.F. Ramos1, M.C. Baptista1,2, E.M. Guimarães1, M.F. Figueiredo4, G.J. Germs9

1University of Brasília, Institute of Geosciences, Campus Darcy Ribeiro, 70.910-900 Brasília DF, Brazil. Email: rodrigo.adorno@cprm.gov.br; ORCID ID: https://orcid.org/0000-0003-1781-0694, http://orcid.org/0000-0001-5324-5480, http://orcid.org/0000-0002-1613-7242, http://orcid.org/0000-0003-4629-0907, http://orcid.org/0000-0001-6290-1910, http://orcid.org/0000-0003-3325-5096, http://orcid.org/0000-0003-0565-3150 , http://orcid.org/0000-0002-1741-3210, http://orcid.org/0000-0002-1178-5208, http://orcid.org/0000-0002-2383-3254

2Geological Survey of Brazil - Center for Technological Development-CEDES, Setor Bancário Norte, 70040-904 Brasília, DF, Brazil.

3Centro de Estudos em Geociências, Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, Brazil. ORCID ID: https://orcid.org/0000-0002-1136-733X

4PETROBRAS-CENPES-PDGEO/BPA, Avenida Horácio Macedo, 950, 21.940-900 Rio de Janeiro, Brazil. ORCID ID: http://orcid.org/0000-0002-7778-6190

5Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515, 13506-900 Rio Claro, Brazil. http://orcid.org/0000-0002-2050-6514

6Freie Universität Berlin (FUB). Kaiserswerther Street 16-18, 14195 Berlin. Germany. http://orcid.org/0000-0002-2383-3254

7Área de Paleontología, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain. http://orcid.org/0000-0002-6027-9002

8State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 710069 Xian, China. http://orcid.org/0000-0002-9867-8156

9Department of Geology, University of the Free State, Bloemfontein, South Africa. http://orcid.org/0000-0003-3622-0788

 

ABSTRACT

This work presents the results of a palaeontological analysis focused on twenty-six species sampled in five sections of the Tamengo and Guaicurus formations, Corumbá and Ladário regions: Corcal and Laginha quarries, Porto Sobramil, Porto Figueiras and Ecoparque Cacimba. Besides, palaeoecological and palaeoenvironmental inferences are presented based on the occurrence of this fossil assemblage. Cloudina carinata Cortijo et al., 2010, previously documented in Spain and Siberia, presents an unprecedented occurrence in the American continent, in siltstones of the Tamengo Formation at Porto Figueiras section, Municipality of Corumbá, Mato Grosso do Sul State, Brazil. The biota of the Tamengo Formation is updated and composed of three biomineralizing metazoans, including poriferan spicules, putative sponge gemmule, and a sessile epibiontic prokaryotic colony. The present work also deals with the taxonomy and stratigraphic distribution of four ichnospecies and three vendotaenid species that integrate the updated benthic fauna for the upper portion of Corumbá Group. The species diversity of the Tamengo Formation was complemented by the occurrence of sixteen microfossil species that possibly represent a marine planktic assemblage. A dramatic change was identified in the palaeoenvironmental conditions of the Tamengo to Guaicurus formations, followed by a mass extinction event, possibly linked to the global Ediacaran-Cambrian mass extinction. In addition, organic-walled microfossils were prepared and analyzed from sections of three countries: nine species from the Nomtsas Formation, Namibia; four species from the Tagatiya Guazu Formation, Paraguay; and six species from the Dengying Formation, China. An international biostratigraphic essay consisting of six biozones is proposed for the uppermost Ediacaran and one biozone for the earliest Cambrian.

Keywords: Ediacaran-Cambrian; Corumbá Group; Biostratigraphy; Micropaleontology.

 

RESUMEN

Se presenta en este trabajo el análisis paleontológico de 26 especies fósiles muestradas en cinco cortes de las Formaciones de Tamengo y Guaicurus en las regines de Corumbá y Ladário: canteras de Corcal y Laginha, Porto Sobramil, Porto Figueiras y Ecoparque Cacimba. Además, se añaden varias interpretaciones paleoecológicas y ambientales, basadas en el registro fósil. Cloudina carinata Cortijo et al., 2010, previamente citada en España y Siberia, aparece por primera vez en el continente Americano, concretamente en limolitas de la Formación Tamengo en el corte de Porto Figueiras, Corumbá, Estado de Mato Grosso do Sul, Brasil. La biota de la Formación Tamengo incluye tres metazoos mineralizados, que incluyen espículas de poríferos, posibles gémulas de esponjas y una colonia sésil de procaiotas epibentónicos. Este trabajo se centra en la taxonomía y distribución estratigráfica de cuatro icnoespecies y tres especies de vendoténidos que forman la fauna bentónica de la parte superior del Grupo de Corumbá. La biodiversidad de la Formación Tamengo ha sido completada con el registro de 16 especies microfósiles que representan posiblemente una asociación plantónica marina. Se ha identificado un cambio drástico en las condiciones ambientales de las Formaciones Tamengo y Guaicurus, que culminan en un evento de extincinón masiva posiblemente relacionado con la extincición en masa que marca el tránsito global Ediácarico-Cámbrico. Por otro lado, se han extraído microfósiles de pared orgánica de varios afloramientos: nueve especies de la Formación de Nomtsas (Namibia), cuatro de la Formación Tagatiya Guazu (Paraguay) y seis de la Formación Dengying (China). Se propone un marco bioestratigráfico para el Ediacárico terminal que incluye seis biozonas y una biozona para el Cámbrico basal.

Palabras clave: Ediacárico-Cámbrico; Grupo de Corumbá; Bioestratigrafía; Micropaleontología.

 

Recibido el 1 de mayo de 2019; Aceptado el 1 de julio de 2019; Publicado online el 12 de noviembre de 2019

Citation / Cómo citar este artículo: Adôrno, R.R. et al. (2019). Palaeontological analyses across the Ediacaran-Cambrian boundary, Upper Corumbá Group, Brazil. Estudios Geológicos 75(2): e094. https://doi.org/10.3989/egeol.43586.549.

Copyright: © 2019 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 4.0 License.


 

CONTENT

IntroductionTOP

The aim of this work is to present an analysis on the taxonomy and stratigraphic distribution of some selected species of the Tamengo and Guaicurus formations, Ediacaran-Cambrian boundary interval in Brazil, in order to propose a chronobiostratigraphic framework for the Ediacaran-Cambrian transition. In addition, palaeoecological and palaeoenvironmental inferences are presented as well as a lithostratigraphic update of the sections in Corumbá and Ladário regions, Mato Grosso do Sul State, Brazil. Considering the scarcity of micropalaeontological data from uppermost Ediacaran sections, samples from three additional localities were prepared and analyzed from the Nomtsas Formation (Namibia), the Tagatiya Guazu Formation (Paraguay) and the Dengying Formation (China). Finally, another objective of this work is to compare the results obtained from the palaeontological analysis of the Tamengo Formation with those already published from uppermost Ediacaran sections, especially in Paraguay, Uruguay, Argentina, Namibia, China, Russia, Canada, United States and Oman.

ResultsTOP

Twenty-six species integrate the study fossil assemblage of the Tamengo and Guaicurus formations. They were clustered into six categories: biomineralizing metazoans, biomineralizing microfossils, vendotaenids, ichnofossils, organic-permineralized microfossils and organic-walled microfossils.

The studied fossil assemblage of the Tamengo Formation consists of twenty-three species, four of which represent benthic and sessile, biomineralizing epibionts: Cloudina lucianoi (Beurlen & Sommer, 1957), C. carinata Cortijo et al., 2010, Corumbella werneri Hahn et al., 1982 and indeterminate sponge remains. Three ichnospecies represent activity of vagile organisms of benthic habit: Multina minima Uchman, 2001, Gordia marina Emmons, 1844 and Pilichnus cf. P. dichotomus Uchman, 1999. Multina minima points to an endobiot organism, while Gordia marina and Pilichnus cf. P. dichotomus represent epibiont vagile explorers on the water-sediment interface. Additionally, sixteen species probably derived from planktic organism, fifteen of which are small organic-walled sphaeromorph microfossils that possibly represent the marine plankton: Arctacellularia januarensis Denezine, 2018 nomem nudum, Leiosphaeridia ternata (Timofeev, 1966), L. crassa (Naumova, 1949), L. jacutica (Timofeev, 1966), L. minutissima (Naumova, 1949), L. tenuissima Eisenack, 1958, L. obsuleta (Naumova, 1949), Bavlinella faveolata Vidal, 1976, Bambuites erichsenii Sommer, 1971, Synsphaeridium sp., Jacutianema sp., Lophosphaeridium sp., Ostiama microcystis Hermann (in Timofeev et al., 1976), Navifusa sp., gen. et sp. 1 and one species of permineralized microfossils, Chuaria circularis Walcott, 1899. The sessile epibiont prokaryotic-colony Vendotaenia antiqua was previously reported from the Cerradinho and Bocaina formations (Zaine, 1991), and herein the occurrence is confirmed from the Tamengo Formation.

Four species represent the benthic fossil assemblage for Guaicurus Formation: Eoholynia corumbensis Gaucher et al., 2005, Tawuia dalensis Hofmann (in Hofmann & Aitken, 1979), Multina minima and Didymaulichnus lyelli (Rouault, 1850). From the total, three species have occurrences restricted to this formation: Eoholynia corumbensis, Tawuia dalensis Hofmann (in Hofmann & Aitken, 1979) and Didymaulichnus lyelli; only Multina minima also occurs in the Tamengo Formation. It is noticeable that the Tamengo Formation exhibits the greatest biodiversity.

The integration of the information regarding the taxonomy and stratigraphic distribution of the above-reported species was presented as a biostratigraphic essay composed of seven biozones, respectively named, from base to top: Cloudina Assemblage Superzone that is distributed in all 15 analyzed sections. There are three biozones inserted in this superzone distributed in sections of Brazil and Paraguay: Cloudina lucianoi/Corumbella werneri Interval Zone; Corumbella werneri Range Zone; and Corumbellla werneri/Cloudina lucianoi Interval Zone (Adôrno et al., 2016, 2017). It was possible to propose two subzones: Bavlinella faveolata - Leiosphaeridia minutissima Assemblage Subzone inserted in the basal part of Corumbella werneri Range Zone and Vendotaenia antiqua-Cloudina lucianoi Concurrent-Range Subzone at the upper portion of the Corumbella werneri/Cloudina lucianoi Interval Zone. The first subzone spans across Brazil, Argentina, Uruguay, Namibia and China; the second across Brazil, Namibia, China and Siberia. Finally, Eoholynia corumbensis Range Zone was proposed for the base of the Guaicurus Formation at Laginha quarry, lowermost Cambrian. The geographic distribution of this biozone is restricted to Laginha quarry locality so far (Fig. 1).

Fig. 1.—Biostratigraphic proposal based on the stratigraphic distribution of the species from the Tamengo Formation; palaeontological informations from the selected sections out of Brazil (Zang & Walter, 1992; Hagadorn & Waggoner, 2000; Hofmann & Mountjoy, 2001; Amthor et al., 2003; Gaucher et al., 2005; Kontorovich et al., 2009; Warren et al., 2011, 2012, 2013, 2017, 2019; Smith et al., 2017; Adôrno 2019); data from Corcal quarry after Parry et al. (2017).

 

ConclusionsTOP

Twenty-six species were studied from the Tamengo and Guaicurus formations, twenty-three of which represent benthic biomineralizing epibionts of sessile habit: Cloudina lucianoi, C. carinata, Corumbella werneri and an indeterminate species of porifera. Vendotaenia antiqua represents a sessile epibiont prokaryotic-colony. Three ichnospecies represent activity of vagile organisms: Multina minima, Gordia marina and Pilichnus cf. P. dichotomus. Multina minima represents endobiot organisms while Gordia marina and Pilichnus cf. P. dichotomus represent epibiont vagile explorers on the water-sediment interface. Additionally, sixteen species probably derived from planktic organisms, such as Arctacellularia januarensis nomem nudum, Leiosphaeridia ternata, L. crassa, L. jacutica, L. minutissima, L. tenuissima, L. obsuleta, Bavlinella faveolata, Bambuites erichsenii , Synsphaeridium sp., Jacutianema sp., Lophosphaeridium sp., Ostiama microcystis, Navifusa sp., gen. 1 sp. 1 and one species of organic-permineralized microfossils, Chuaria circularis.

Four species represent a benthic fossil assemblage for the Guaicurus Formation: Eoholynia corumbensis, Tawuia dalensis, Multina minima and Didymaulichnus lyelli. From the total, three species have occurrences restricted to this formation, and only Multina minima shows occurrences in the Tamengo Formation.

Seven biozones were proposed, from bottom to top: Cloudina Assemblage Superzone that is distributed in all 15 analyzed sections in Brazil, Paraguay, Uruguay, Argentina, United States, Canada, Namibia, Oman, Russia and China. Inserted in this superzone, there are three biozones, distributed in sections of Brazil and Paraguay: Cloudina lucianoi/Corumbella werneri Interval Zone; Corumbella werneri Range Zone; Corumbellla werneri/Cloudina lucianoi Interval Zone. It was possible to propose two subzones: Bavlinella faveolata - Leiosphaeridia minutissima Assemblage Subzone inserted in the base of Corumbella werneri Range Zone and Vendotaenia antiqua-Cloudina lucianoi Concurrent-Range Subzone at the upper portion of the Corumbella werneri/Cloudina lucianoi Interval Zone. The first subzone spam across Brazil, Argentina, Uruguay, Namibia and China, the second across Brazil, Namibia, China and Siberia. Finally, Eoholynia corumbensis Range Zone was proposed at the base of Guaicurus Formation at Laginha quarry, lowermost Cambrian. The geographic distribution of this biozone is restricted to Laginha quarry locality so far.

 

ReferencesTOP


Adôrno, R.R. (2019). Taxonomy, paleoecology and chronobiostratigraphy across the Ediacaran-Cambrian boundary: Tamengo and Guaicurus formations. PhD, University of Brasília.
Adôrno, R.R., Do Carmo, D.A., Walde, D.H.G., Denezine, M., Boggiani, P.C., Sousa e Silva, S.C., Vasconcelos, J.R., Tobias, T.C., Guimarães, E.M., Vieira L.C., Figueiredo, M.L.CF., Moraes, R., Caminha, S.A., Suarez, P.A.Z., Pinho, D. & Rodriguez, C.G.V. (2016). Biostratigraphy of Neoproterozoic strata based on invertebrate species from South America. 35th International Geological Congress, Capetown, Session: The Dawn of Animals, Abstracts, 41-44.
Adôrno, R.R., Do Carmo, D.A., Walde, D.H., Denezine, M., Boggiani, P.C., Sousa, S.C., Vasconcelos, J.R., Tobias, T.C., Guimarães, E.M., Vieira, L.C., Figuereido, M.F., Caminha, S.A., Suarez, P.A.Z., Rodriguez, C.G.V., Pinho, D.M., Schneider, G. & Muyamba, R. (2017). Cloudina lucianoi (Beurlen & Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: taxonomy, analysis of stratigraphic distribution and biostratigraphy. Precambrian Research, 301: 19-35. https://doi.org/10.1016/j.precamres.2017.08.023
Beurlen, K. & Sommer, F.W. (1957). Observações estratigráficas e paleontológicas sobre o calcário Corumbá. Rio de Janeiro. Departamento Nacional de Produção Mineral, Divisão de Geologia e Mineralogia, Boletim, 168: 1-35.
Cortijo, I., Martí Mus, M., Jensen, S. & Palacios, T. 2010. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research, 176: 1-10. https://doi.org/10.1016/j.precamres.2009.10.010
Denezine, M. (2018). Microfósseis orgânicos da Formação Sete Lagoas, Município de Januária, Estado de Minas Gerais, Brasil: taxonomia e análise bioestratigráfica. Dissertação de mestrado, Universidade de Brasília, Brasília, DF.
Eisenack, A. (1958). Mikrofossilien aus dem Ordovizium des Baltikums. 1. Markasitschichte Dictyonema-Schiefer, Glaukonitsand, Gluakonitkalk. Senckenbergiana lethaea, 29 (5-6): 389-405.
Emmons, E. (1844). The Taconic System; based on observations in New York, Massachusetts, Maine, Vermont and Rhode Island. Caroll and Cook ed., Albany, 68 p.
Gaucher, C., Poire, D.G., Gomez Peral, L. & Chiglino, L. (2005). Litoestratigrafia, bioestratigrafia y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cámbrico del Cratón del Río de La Plata (Uruguay y Argentina). Latin American Journal of Sedimentology and Basin Analysis, 12: 145-160.
Hagadorn, J. W. & Waggoner, B. (2000). Ediacaran fossils from the Southwestern Great Basin, United States. Journal of Paleontology, 74: 349-359. https://doi.org/10.1666/0022-3360(2000)074<0349:EFFTSG>2.0.CO;2
Hahn, G., Hahn, R., Leonardos, O. H., Pflug, H. D. & Walde, D.H.G. (1982). Korperlich erhaltene Scyphozoen - Reste aus dem Jungprakambrium Braziliens. Geologica et Palaeontologica, 16: 1-18.
Hofmann, H.J. & Aitken, J.D. (1979). Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada. Canadian Journal of Earth Sciences, 16: 150-166. https://doi.org/10.1139/e79-014
Hofmann, H.J. & Mountjoy, E.W. (2001). Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada’s oldest shelly fossils. Geology, 29: 1091-1094. https://doi.org/10.1130/0091-7613(2001)029<1091:NCAINM>2.0.CO;2
Kontorovich, A.E., Sokolovb, B.S., Kontorovich, V. A., Varlamov, A. I., Grazhdankin, D.V., Efimov, A.S., Klets, A.G., Saraev, S.V., Terleev, A.A., Belyaev, S.Yu., Varaksina, I.V., Karlova, G.A., Kochnev, B.B., Nagavitsin, K.E., Postnikov, A.A. & Filippov, Yu. F. (2009). The first section of Vendian deposits in the Basement Complex of the West Siberian Petroleum Megabasin (resulting from the drilling of the Vostok-3 parametric borehole in the Eastern Tomsk Region). Doklady Earth Sciences, 425: 219-222. https://doi.org/10.1134/S1028334X09020093
Naumova, S.N. (1949). Spores from the lower Cambrian. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 4: 49-56 [in Russian].
Parry, L., Boggiani, P.C., Condon, D., Garwood, R., Leme, J.M., McIlroy, D., Brasier, M.D., Trindade, R., Campanha, G.A.C., Pacheco, M.L.A.F., Diniz, C.Q.C. & Liu, A.G. (2017). Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nature Ecology & Evolution, 1: 1455-1464. https://doi.org/10.1038/s41559-017-0301-9
Rouault, M. (1850). Note préliminaire sur une nouvelle formation découverte dans la terrain silurien inférieur de la Bretagne. Bulletin de la Société géologique de France (série 2), 7: 724-744.
Smith, E.F., Nelson, L.L., Tweedt, S.M., Zeng, H. & Workman, J.B. (2017). A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link. Proceedings of the Royal Society B, 284: 20170934. https://doi.org/10.1098/rspb.2017.0934
Sommer, E.W. (1971). Microfósseis do calcário Bambuí, de Pedro Leopoldo, Estado de Minas Gerais. Anais Academia Brasileira de Ciências, 43: 135-139.
Timofeev, B.V. (1966). Micropaleophytological research into ancient strata. Nauka, Leningrad, 147 p. [English translation 1974, British Library-Landing Div., London, 214 p.].
Timofeev, B.V., Hermann, T.N. & Mikhaylova, N.S. (1976). Microfossils from the Precambrian, Cambrian and Ordovician (Mikrofitofossilii dokembryia kembryia i ordovika), 107 pp. Nauka, Leningrad [in Russian].
Uchman, A. (1999). Ichnology of the Rhenodanubian flysch (Lower Cretaceous-Eocene) in Austria and Germany. Beringeria, 25: 65-171.
Uchman, A. (2001). Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria, 28: 3-41.
Vidal, G. (1976). Late Precambrian microfossils from the Visingso beds in southern Sweden. Fossils and Strata, 9: 1-57.
Walcott, C.D. (1899). Precambrian fossiliferous formations. Geological Society of America Bulletin, 19: 199-244. https://doi.org/10.1130/GSAB-10-199
Warren, L.V., Fairchild, T.R., Gaucher, C., Boggiani, P.C., Poiré, D.G., Anelli, L.E. & Inchausti, J.C.G. (2011). Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova, 23: 382-389. https://doi.org/10.1111/j.1365-3121.2011.01023.x
Warren, L.V., Simoes, M.G., Fairchild, T.R., Riccomini, C., Gaucher, C., Anelli, L. E., Freitas, B. T., Boggiani, P.C. & Quaglio, F. (2013). Origin and impact of the oldest metazoan bioclastic sediments. Geology, 41: 507-510. https://doi.org/10.1130/G33931.1
Warren, L.V., Quaglio, F., Riccomini, C., Simões, M.G., Poiré, D.G., Strikis, N.M., Anelli, L.E. & Strikis, P.C. (2014). The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway. Geology, 42: 391-394. https://doi.org/10.1130/G35304.1
Warren, L.V., Quaglio, F., Simões, M.G., Gaucher, C., Riccomini, C., Poiré, D.G., Freitas, B.T., Paulo C. Boggiani & Sial A.N. (2017). Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran. Precambrian Research, 298: 79-87. https://doi.org/10.1016/j.precamres.2017.05.003
Warren, L.V., Freitas, B.T., Riccomini, C., Boggiani, P.C., Quaglio, F., Simões, M.G., Fairchild, T.R., Giorgioni, M., Gaucher, C., Poiré, D.G., Cáceres, A.A. & Sial, A.N. (2019). Sedimentary evolution and tectonic setting of the Itapucumi Group, Ediacaran, northern Paraguay: From Rodinia break-up to West Gondwana amalgamation. Precambrian Research, 322: 99-121. https://doi.org/10.1016/j.precamres.2018.12.022
Zaine, M.F. (1991). Análise dos fósseis de parte da Faixa Paraguay (MS, MT) e seu contexto temporal e paleoambiental. PhD, University of São Paulo.
Zang, W. & Walter, M.R. (1992). Late Proterozoic and early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China. Precambrian Research, 57: 243-323. https://doi.org/10.1016/0301-9268(92)90004-8