Estimación de las propiedades termodinámicas de fosfatos minerales a alta y baja temperatura por suma de sus unidades constituyentes

Autores/as

  • A. La Iglesia Instituto de Geología Económica, CSIC. Facultad de Ciencias Geológicas, Universidad Complutense. Madrid

DOI:

https://doi.org/10.3989/egeol.39849.060

Palabras clave:

Energía libre de Gibbs, Entalpía, Fosfatos minerales, Propiedades termodinámicas

Resumen


Usando el modelo de unidades poliédricas de Hazen, y empleando un método de ajuste por mínimos cuadrados, se ha calculado la contribución de diecinueve unidades constituyentes a la energía libre y de otras quince unidades a la entalpía de los fosfatos minerales en condiciones termodinámicas normales (298 °K de temperatura y 1 bar de presión) y a altas temperaturas (400-1.000 °K).

Con los valores de gi y hi calculados por este método se puede estimar las propiedades termodinámicas de cualquier fosfato mineral con mayor precisión que la conseguida hasta ahora por otros métodos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Borno, A. & Tomson, M.B. (1994). The temperature dependence of the solubility product constant of vivianite. Geochimica et Cosmochimica Acta, 58: 5373-5378. doi:10.1016/0016-7037(94)90236-4

Chen, C.H. (1975). A method for estimation of standard free energies of formation of silicate minerals at 298.15 degrees K. American Journal of Science, 275: 801-807.

Chermak, J.A. & Rimstidt, J.D. (1989). Estimating the thermodynamic properties (⊗G°f and ⊗H°f) of silicate minerals at 298 K from the sum of polyhedral contributions. American Mineralogist, 74: 1023-1031.

Chermak, J.A. & Rimstidt, J.D. (1990). Estimating the free energy of formation of silicate minerals at high temperatures from the sum of polyhedral contributions. American Mineralogist, 75: 1376-1380.

Duff, E.J. (1971a). Orthophosphates VIII. The Transformation of newberyite into bobierrite in aqueous alkaline solutions. Journal of the Chemical Society A: 2736-2740. doi:10.1039/j19710002736

Duff, E.J. (1971b). Orthophosphates III. The hydrolysis of secondary calcium orthophosphates. Journal of the Chemical Society A: 917-921. doi:10.1039/j19710000917

Duff, E.J. (1971c). Orthophosphates. Part IV. The stability relationships of orthophosphates within the systems CaO-P2O5-H20 and CaF2-CaO-P2O5 under aqueous conditions. Journal of the Chemical Society A: 921- 926. doi:10.1039/j19710000921

Duff, E.J. (1972). Orthophosphates VII. Thermodynamical considerations concerning the stability of oxiapatite Ca10O(P04)6 in aqueous media. Journal of Inorganic and Nuclear Chemistry 34: 853-857. doi:10.1016/0022-1902(72)80059-9

Grimwall, G. (2001). Dependence of thermodynamic properties on atomic masses and bonding in solids. In: Solid Solutions in Silicate and Oxide Systems (Geiger C.A., ed.), EMU Notes in Mineralogy, 3: 13-26.

Hazen, A.M. (1985). Comparative crystal chemistry and the polyhedral approach. In: Microscopic to macroscopic: Atomic environment to mineral thermodynamic (Kieffer, S.W. & Navrotsky, A. eds.), Mineralogical Society of America. Reviews in Mineralogy, 14: 317-345.

Holland, T.J.B. (1989) Dependence of entropy on volume for silicate and oxide minerals: A review and predictive model. American Mineralogist, 74: 5-13.

Karpov, I.K. & Kashik, S.A. (1968). Computer calculation of standard isobaric isothermal potentials of silicates by multiple regression from a crystallochemical classification. Geokhimiya, 7: 806-814.

La Iglesia, A. & Aznar, A. (1986). A method of estimating the Gibbs energies of formation of zeolites. Zeolites, 6: 26-29. doi:10.1016/0144-2449(86)90007-2

La Iglesia, A. & Aznar, A. (1990). Estimation des energies libres de Gibbs de formation de zéolithes, feldspaths et feldspathoides. Journal de Chimie Physique, 87: 1681-1689.

La Iglesia, A. & Felix, J.F. (1994). Estimation of thermodynamic properties of mineral carbonates at high and low temperatures from the sum of polyhedral contributions. Geochimica et Cosmochimica Acta, 58: 3983- 3991. doi:10.1016/0016-7037(94)90261-5

Latimer, W.M. (1952). Oxidation Potential, Second edition, Prentice-Hall, New York, 392 pp.

Naumov, G.B., Ryzenko, B. & Khodakovsky, I.L. (1971). Handbook of thermochemical data. Moscow, Atomizdat, 239 pp.

Nriagu, J.D. (1975). Thermochemical approximations for clay minerals. American Mineralogist, 60: 834-839.

Nriagu, J.D. (1976). Phosphate-clay mineral relation in soil and sediments. Canadian Journal of Earth Sciences, 13: 717-736. doi:10.1139/e76-077

Parker, V.B., Wagrnan, D.D. & Evans, W.H. (1971). Selected Values of Chemical Thermodynamic Properties. Nat. Bur. Standard. Tech. Note 270-6, 119 pp.

Robie, R.A., Hemingway, B. S. & Fischer, J.R. (1979). Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. Geological Survey Bulletin, 1452, 456 pp.

Robinson, G.R. Jr. & Haas, J.L. Jr. (1983). Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction. American Mineralogist, 68: 541-553.

Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S. & Jaffe, I. (1952). Selected Values of Chemical Thermodynamic Properties. Nat. Bur. Standard. Circ. 500 U.S. Dept. Commerce.

Slaughter, M. (1966). Chemical binding in silicate minerals. I. Model for determining crystal-chemical properties. Geochim. et Cosmochim. Acta, 30: 299-313. doi:10.1016/0016-7037(66)90004-4

Sposito, G. (1986). The Polymer Model of Thermochemical Clay Minerals Stability. Clays and Clay Minerals, 34: 198-203. doi:10.1346/CCMN.1986.0340210

Tacker, R.C. & Stormer, J.C. Jr. (1989). A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. American Mineralogist, 74: 877-888.

Tardy, Y. & Garrels, R.M. (1974). A method of estimating the Gibbs energies of formation of layer silicates. Geochimica et Cosmochimica Acta, 38: 1101-1116. doi:10.1016/0016-7037(74)90007-6

Tardy, Y. & Garrels, R.M. (1976). Prediction of Gibbs energies of formation: I. Relationship among Gibbs energies of formation of hydroxides, oxides and aqueous ions. Geochim. et Cosmochim. Acta, 40: 1051- 1056. doi:10.1016/0016-7037(76)90046-6

Tardy, Y. & Garrels, R.M. (1977). Prediction of Gibbs energies of formation of compounds from the elements: II. Monovalent and divalent metal silicates. Geochim. et Cosmochim. Acta, 41: 87-92. doi:10.1016/0016-7037(77)90189-2

Tardy, Y. & Gartner, L. (1977). Relationships among Gibbs energies of formation of sulfates, nitrates, carbonates, oxides and aqueous ions. Contributions to Mineralogy and Petrology, 63: 89-102. doi:10.1007/BF00371678

Tardy, Y. & Vieillard, P. (1977). Relationships among Gibbs Free Energies and Enthalpies of Formation of Phosphates, Oxides and Aqueous Ions. Contributions to Mineralogy and Petrology, 63: 75-88. doi:10.1007/BF00371677

Vieillard, P. & Tardy, Y. (1984). Thermochemical Properties of Phosphates. In: Phosphate Minerals (Nriagu, J.O. & Moore, P.B., eds.), Springer-Verlag, Berlin, 442 pp.

Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M. & Schumm, R.H. (1968). Selected Values of Chemical Thermodynamic Properties, National Bureau of Standards, Technical Note 270-4, 152 pp.

Wagman, D.D., Evans, W.H., Parker, v. B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, I.C.L. & Nuttall, R.L. (1982). The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. Journal of Physical and Chemical Reference Data, 11, Supplement 2, 392 pp.

Wilcox, D.E. & Bromley, R.A. (1963). Method for Estimating the Heat of Formation and Free Energy of Formation of Inorganic Compounds. Ind. Eng. Chem., 55: 32-39 doi:10.1021/ie50643a006

Woods, T.L. & Garrels, R.M. (1987). Thermodynamic values at low temperature for natural inorganic materials. An uncritical summary. Oxford University Press, 242 pp.

Descargas

Publicado

2009-12-30

Cómo citar

La Iglesia, A. (2009). Estimación de las propiedades termodinámicas de fosfatos minerales a alta y baja temperatura por suma de sus unidades constituyentes. Estudios Geológicos, 65(2), 109–119. https://doi.org/10.3989/egeol.39849.060

Número

Sección

Artículos

Artículos más leídos del mismo autor/a