Desequilibrio del ciclo del azufre y cambio ambiental durante el Período Ediacárico

Autores/as

DOI:

https://doi.org/10.3989/egeol.43605.569

Palabras clave:

Isótopos de carbono, Isótopos de azufre, Balance biogeoquímico, Ediacárico

Resumen


Se propone aquí un enfoque diferente para resolver el problema de las excursiones quimioestratigráficas negativas durante el Ediacárico, considerándolas en términos de un sistema vinculado de carbono-sulfuro-oxígeno, en el que los cambios en la dinámica de los oxidantes causarían un exceso de oxidación de carbono orgánico sobre el enterramiento, lo que resultaría en un depósito menor de DOM. La cantidad de oxidante requerida para lograr una excursión isotópica de carbono negativa a través de la oxidación de carbono orgánico neto puede resultar razonablemente de la disolución de evaporitaa a escala de cuenca.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bristow, T.F. & Kennedy, M.J. (2008). Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 36: 863-866. https://doi.org/10.1130/G24968A.1

Burke, A.; Present, T.M.; Paris, G.; Rae, E.C.M.; Sandilands, B.H.; Gaillardet, J.; Peucker-Ehrenbrink, B.; Fischer, W.W.; McClelland, J.W.; Spencer, R.G.M.; Voss, B.M. & Adkins, J.F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Sciences Letters, 496: 168-177. https://doi.org/10.1016/j.epsl.2018.05.022

Burns, S.J. & Matter, A. (1993). Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologica Helvetiae, 86: 595-607.

Calver, C.R. (2000). Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 100: 121-150. https://doi.org/10.1016/S0301-9268(99)00072-8

Campbell, I.H. & Squire, R.J. (2010). The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74: 4187-4206. https://doi.org/10.1016/j.gca.2010.04.064

Chen, X.; Ling, H.-F.; Vance, D.; Shields-Zhou, G.A.; Zhu, M.; Poulton, S.W.; Och, L.M.; Jiang, S.-Y.; Li, D.; Cremonese, L. & Archer, C. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6: 1-7. https://doi.org/10.1038/ncomms8142 PMid:25980960 PMCid:PMC4479002

Condon, D.; Zhu, M.; Bowring, S.; Wang, W.; Yang, A. & Jin, Y. (2005). U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science, 308: 95-98. https://doi.org/10.1126/science.1107765 PMid:15731406

Derry, L.A. (2010). A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294: 152-162. https://doi.org/10.1016/j.epsl.2010.03.022

Evans, D.A.D. (2006). Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, 444: 51-55. https://doi.org/10.1038/nature05203 PMid:17080082

Fakhraee, M.; Hancisse, O.; Canfield, D.E.; Crowe, S.A. & Katsev, S. (2019). Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nature Geoscience, 12: 375-380. https://doi.org/10.1038/s41561-019-0351-5

Garrels, R.M. & Lerman, A. (1984). Coupling of the sedimentary sulfur and carbon cycles - an improved model. American Journal of Science, 284: 989-1007. https://doi.org/10.2475/ajs.284.9.989

Gong, Z.; Kodama, K.P. & Li, Y.X. (2017). Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion. Precambrian Research, 289: 62-74. https://doi.org/10.1016/j.precamres.2016.12.002

Grotzinger, J.P.; Fike, D.A. & Fischer, W.W. (2011). Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4: 285-292. https://doi.org/10.1038/ngeo1138

Guilbaud, R.; Poulton, S.W.; Butterfield, N.J.; Zhu, M. & Shields-Zhou, G.A. (2015). A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience, 8:466-470. https://doi.org/10.1038/ngeo2434

He, T.; Zhu, M.; Mills, B.J.W.; Wynn, P.M.; Zhuravlev, A.Y.; Tostevin, R.; Strandmann, P.A.E.P. Von, Yang, A.; Poulton, S.W. & Shields, G.A. (2019). Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 12: 468-474. https://doi.org/10.1038/s41561-019-0357-z PMid:31178922 PMCid:PMC6548555

Kaufman, A.J.; Knoll, A.H. & Narbonne, G.M. (1997). Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences USA, 94: 6600-6605. https://doi.org/10.1073/pnas.94.13.6600 PMid:11038552 PMCid:PMC21204

Kendall, B.; Komiya, T.; Lyons, T.W.; Bates, S.M.; Gordon, G.W.; Romaniello, S.J.; Jiang, G.; Creaser, R.A.; Xiao, S.; McFadden, K.; Sawaki, Y.; Tahata, M.; Shu, D.; Han, J.; Li, Y.; Chu, X. & Anbar, A.D. (2015). Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late ediacaran period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025

Krissansen-Totton, J.; Buick, R. & Catling, D.C. (2015). A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen. American Journal of Science, 315: 275-316. https://doi.org/10.2475/04.2015.01

Lang, X.; Shen, B.; Peng, Y.; Xiao, S.; Zhou, C.; Bao, H.; Kaufman, A.J.; Huang, K.; Crockford, P.W. & Liu, Y. (2018). Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x PMid:30068999 PMCid:PMC6070556

Le Heron, D.P.; Vandyk, T.M.; Kuang, H.; Liu, Y.; Chen, X.; Wang, Y.; Yang, Z.; Scharfenberg, L.; Davies, B. & Shields, G. (2019). Bird ' s-eye view of an Ediacaran subglacial landscape, 47: 1-5. https://doi.org/10.1130/G46285.1

Lee, C.; Love, G.D.; Fischer, W.W.; Grotzinger, J.P. & Halverson, G.P. (2015). Marine organic matter cycling during the Ediacaran Shuram excursion. Geology, 43: 1103-1106. https://doi.org/10.1130/G37236.1

Lenton, T.M.; Boyle, R.A.; Poulton, S.W.; Shields-Zhou, G.A. & Butterfield, N.J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257-265. https://doi.org/10.1038/ngeo2108

Li, C.; Hardisty, D.S.; Luo, G.; Huang, J.; Algeo, T.J.; Cheng, M.; Shi, W.; An, Z.; Tong, J.; Xie, S.; Jiao, N. & Lyons, T.W. (2017). Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology, 15: 211-224. https://doi.org/10.1111/gbi.12222 PMid:27997754

Lu, M.; Zhu, M.; Zhang, J.; Shields-Zhou, G.; Li, G.; Zhao, F.; Zhao, X. & Zhao, M. (2013). The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Research, 225: 86-109. https://doi.org/10.1016/j.precamres.2011.10.018

Melezhik, V.; Fallick, A.E. & Pokrovsky, B.G. (2005). Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle. Precambrian Research, 137: 131-165. https://doi.org/10.1016/j.precamres.2005.03.010

Prince, J.K.G.; Rainbird, R.H. & Wing, B.A. (2019). Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur. Geology, 47 (4): 375-379. https://doi.org/10.1130/G45464.1

Pu, J.P.; Bowring, S.A.; Ramezani, J.; Myrow, P.; Raub, T.D.; Landing, E.; Mills, A.; Hodgin, E. & Macdonald, F.A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44 (11): 955-958. https://doi.org/10.1130/G38284.1

Rothman, D.H.; Hayes, J.M. & Summons, R.E. (2003). Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences USA, 100: 8124-8129. https://doi.org/10.1073/pnas.0832439100 PMid:12824461 PMCid:PMC166193

Sahoo, S.K.; Planavsky, N.J.; Kendall, B.; Wang, X.; Shi, X.; Scott, C.; Anbar, A.D.; Lyons, T.W. & Jiang, G. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445 PMid:23018964

Schmid, S. (2017). Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia). Precambrian Research, 290: 16-31. https://doi.org/10.1016/j.precamres.2016.12.004

Schrag, D.P.; Higgins, J.A.; Macdonald, F.A. & Johnston, D.T. (2013). Authigenic carbonate and the history of the global carbon cycle. Science 339: 540-543, https://doi.org/10.1126/science.1229578 PMid:23372007

Schroder, S.; Schreiber, B.C.; Amthor, J.E. & Matter, A. (2004). Stratigraphy and environmental conditions of the terminal Neoproterozoic-Cambrian Period in Oman: evidence from sulfur isotopes. Journal of the Geological Society of London, 161: 489-499. https://doi.org/10.1144/0016-764902-062

Shi, W.; Li, C.; Luo, G.; Huang, J.; Algeo, T.J.; Jin, C.; Zhang, Z. & Cheng, M. (2018). Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology, 46: 267-270. https://doi.org/10.1130/G39663.1

Strauss, H. (1993). The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record. Precambrian Research, 63(34): 225-246. https://doi.org/10.1016/0301-9268(93)90035-Z

Tostevin, R.; Clarkson, M.O.; Gangl, S.; Shields, G.A.; Wood, R.A.; Bowyer, F.; Penny, A.M. & Stirling, C.H. (2019). Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506: 104-112. https://doi.org/10.1016/j.epsl.2018.10.045

Turner, E.C. & Bekker, A. (2016). Thick sulfate evaporite accumulations marking a mid-neoproterozoic oxygenation event (ten stone formation, Northwest territories, Canada). Bulletin of the Geological Society of America, 128(1-2): 203-222. https://doi.org/10.1130/B31268.1

Wortmann, U.G. & Paytan, A. (2012). Rapid variability of seawater chemistry over the past 130 million years. Science, 337: 334-336. https://doi.org/10.1126/science.1220656 PMid:22822148

Publicado

2019-12-30

Cómo citar

Shields, G. A., & Mills, B. J. (2019). Desequilibrio del ciclo del azufre y cambio ambiental durante el Período Ediacárico. Estudios Geológicos, 75(2), e114. https://doi.org/10.3989/egeol.43605.569

Número

Sección

Artículos