Sulfur cycle imbalance and environmental change during the Ediacaran Period

Authors

DOI:

https://doi.org/10.3989/egeol.43605.569

Keywords:

Carbon isotopes, Sulfur isotopes, Biogeochemical balance, Ediacaran

Abstract


A different approach is proposed here to solve the problem of negative δ13C excursions during the Ediacaran, by viewing them in terms of a linked carbon-sulfur-oxygen system, whereby changes in oxidant dynamics caused an excess of organic carbon oxidation over burial, resulting in a smaller DOM reservoir. The amount of oxidant required to achieve a deep negative carbon isotope excursion through net organic carbon oxidation may reasonably result from basin-scale evaporite dissolution.

Downloads

Download data is not yet available.

References

Bristow, T.F. & Kennedy, M.J. (2008). Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 36: 863-866. https://doi.org/10.1130/G24968A.1

Burke, A.; Present, T.M.; Paris, G.; Rae, E.C.M.; Sandilands, B.H.; Gaillardet, J.; Peucker-Ehrenbrink, B.; Fischer, W.W.; McClelland, J.W.; Spencer, R.G.M.; Voss, B.M. & Adkins, J.F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Sciences Letters, 496: 168-177. https://doi.org/10.1016/j.epsl.2018.05.022

Burns, S.J. & Matter, A. (1993). Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologica Helvetiae, 86: 595-607.

Calver, C.R. (2000). Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 100: 121-150. https://doi.org/10.1016/S0301-9268(99)00072-8

Campbell, I.H. & Squire, R.J. (2010). The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74: 4187-4206. https://doi.org/10.1016/j.gca.2010.04.064

Chen, X.; Ling, H.-F.; Vance, D.; Shields-Zhou, G.A.; Zhu, M.; Poulton, S.W.; Och, L.M.; Jiang, S.-Y.; Li, D.; Cremonese, L. & Archer, C. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6: 1-7. https://doi.org/10.1038/ncomms8142 PMid:25980960 PMCid:PMC4479002

Condon, D.; Zhu, M.; Bowring, S.; Wang, W.; Yang, A. & Jin, Y. (2005). U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science, 308: 95-98. https://doi.org/10.1126/science.1107765 PMid:15731406

Derry, L.A. (2010). A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294: 152-162. https://doi.org/10.1016/j.epsl.2010.03.022

Evans, D.A.D. (2006). Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, 444: 51-55. https://doi.org/10.1038/nature05203 PMid:17080082

Fakhraee, M.; Hancisse, O.; Canfield, D.E.; Crowe, S.A. & Katsev, S. (2019). Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nature Geoscience, 12: 375-380. https://doi.org/10.1038/s41561-019-0351-5

Garrels, R.M. & Lerman, A. (1984). Coupling of the sedimentary sulfur and carbon cycles - an improved model. American Journal of Science, 284: 989-1007. https://doi.org/10.2475/ajs.284.9.989

Gong, Z.; Kodama, K.P. & Li, Y.X. (2017). Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion. Precambrian Research, 289: 62-74. https://doi.org/10.1016/j.precamres.2016.12.002

Grotzinger, J.P.; Fike, D.A. & Fischer, W.W. (2011). Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4: 285-292. https://doi.org/10.1038/ngeo1138

Guilbaud, R.; Poulton, S.W.; Butterfield, N.J.; Zhu, M. & Shields-Zhou, G.A. (2015). A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience, 8:466-470. https://doi.org/10.1038/ngeo2434

He, T.; Zhu, M.; Mills, B.J.W.; Wynn, P.M.; Zhuravlev, A.Y.; Tostevin, R.; Strandmann, P.A.E.P. Von, Yang, A.; Poulton, S.W. & Shields, G.A. (2019). Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 12: 468-474. https://doi.org/10.1038/s41561-019-0357-z PMid:31178922 PMCid:PMC6548555

Kaufman, A.J.; Knoll, A.H. & Narbonne, G.M. (1997). Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences USA, 94: 6600-6605. https://doi.org/10.1073/pnas.94.13.6600 PMid:11038552 PMCid:PMC21204

Kendall, B.; Komiya, T.; Lyons, T.W.; Bates, S.M.; Gordon, G.W.; Romaniello, S.J.; Jiang, G.; Creaser, R.A.; Xiao, S.; McFadden, K.; Sawaki, Y.; Tahata, M.; Shu, D.; Han, J.; Li, Y.; Chu, X. & Anbar, A.D. (2015). Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late ediacaran period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025

Krissansen-Totton, J.; Buick, R. & Catling, D.C. (2015). A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen. American Journal of Science, 315: 275-316. https://doi.org/10.2475/04.2015.01

Lang, X.; Shen, B.; Peng, Y.; Xiao, S.; Zhou, C.; Bao, H.; Kaufman, A.J.; Huang, K.; Crockford, P.W. & Liu, Y. (2018). Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x PMid:30068999 PMCid:PMC6070556

Le Heron, D.P.; Vandyk, T.M.; Kuang, H.; Liu, Y.; Chen, X.; Wang, Y.; Yang, Z.; Scharfenberg, L.; Davies, B. & Shields, G. (2019). Bird ' s-eye view of an Ediacaran subglacial landscape, 47: 1-5. https://doi.org/10.1130/G46285.1

Lee, C.; Love, G.D.; Fischer, W.W.; Grotzinger, J.P. & Halverson, G.P. (2015). Marine organic matter cycling during the Ediacaran Shuram excursion. Geology, 43: 1103-1106. https://doi.org/10.1130/G37236.1

Lenton, T.M.; Boyle, R.A.; Poulton, S.W.; Shields-Zhou, G.A. & Butterfield, N.J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257-265. https://doi.org/10.1038/ngeo2108

Li, C.; Hardisty, D.S.; Luo, G.; Huang, J.; Algeo, T.J.; Cheng, M.; Shi, W.; An, Z.; Tong, J.; Xie, S.; Jiao, N. & Lyons, T.W. (2017). Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology, 15: 211-224. https://doi.org/10.1111/gbi.12222 PMid:27997754

Lu, M.; Zhu, M.; Zhang, J.; Shields-Zhou, G.; Li, G.; Zhao, F.; Zhao, X. & Zhao, M. (2013). The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Research, 225: 86-109. https://doi.org/10.1016/j.precamres.2011.10.018

Melezhik, V.; Fallick, A.E. & Pokrovsky, B.G. (2005). Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle. Precambrian Research, 137: 131-165. https://doi.org/10.1016/j.precamres.2005.03.010

Prince, J.K.G.; Rainbird, R.H. & Wing, B.A. (2019). Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur. Geology, 47 (4): 375-379. https://doi.org/10.1130/G45464.1

Pu, J.P.; Bowring, S.A.; Ramezani, J.; Myrow, P.; Raub, T.D.; Landing, E.; Mills, A.; Hodgin, E. & Macdonald, F.A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44 (11): 955-958. https://doi.org/10.1130/G38284.1

Rothman, D.H.; Hayes, J.M. & Summons, R.E. (2003). Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences USA, 100: 8124-8129. https://doi.org/10.1073/pnas.0832439100 PMid:12824461 PMCid:PMC166193

Sahoo, S.K.; Planavsky, N.J.; Kendall, B.; Wang, X.; Shi, X.; Scott, C.; Anbar, A.D.; Lyons, T.W. & Jiang, G. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445 PMid:23018964

Schmid, S. (2017). Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia). Precambrian Research, 290: 16-31. https://doi.org/10.1016/j.precamres.2016.12.004

Schrag, D.P.; Higgins, J.A.; Macdonald, F.A. & Johnston, D.T. (2013). Authigenic carbonate and the history of the global carbon cycle. Science 339: 540-543, https://doi.org/10.1126/science.1229578 PMid:23372007

Schroder, S.; Schreiber, B.C.; Amthor, J.E. & Matter, A. (2004). Stratigraphy and environmental conditions of the terminal Neoproterozoic-Cambrian Period in Oman: evidence from sulfur isotopes. Journal of the Geological Society of London, 161: 489-499. https://doi.org/10.1144/0016-764902-062

Shi, W.; Li, C.; Luo, G.; Huang, J.; Algeo, T.J.; Jin, C.; Zhang, Z. & Cheng, M. (2018). Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology, 46: 267-270. https://doi.org/10.1130/G39663.1

Strauss, H. (1993). The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record. Precambrian Research, 63(34): 225-246. https://doi.org/10.1016/0301-9268(93)90035-Z

Tostevin, R.; Clarkson, M.O.; Gangl, S.; Shields, G.A.; Wood, R.A.; Bowyer, F.; Penny, A.M. & Stirling, C.H. (2019). Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506: 104-112. https://doi.org/10.1016/j.epsl.2018.10.045

Turner, E.C. & Bekker, A. (2016). Thick sulfate evaporite accumulations marking a mid-neoproterozoic oxygenation event (ten stone formation, Northwest territories, Canada). Bulletin of the Geological Society of America, 128(1-2): 203-222. https://doi.org/10.1130/B31268.1

Wortmann, U.G. & Paytan, A. (2012). Rapid variability of seawater chemistry over the past 130 million years. Science, 337: 334-336. https://doi.org/10.1126/science.1220656 PMid:22822148

Published

2019-12-30

How to Cite

Shields, G. A., & Mills, B. J. (2019). Sulfur cycle imbalance and environmental change during the Ediacaran Period. Estudios Geológicos, 75(2), e114. https://doi.org/10.3989/egeol.43605.569

Issue

Section

Articles