Sulfur cycle imbalance and environmental change during the Ediacaran Period
DOI:
https://doi.org/10.3989/egeol.43605.569Keywords:
Carbon isotopes, Sulfur isotopes, Biogeochemical balance, EdiacaranAbstract
A different approach is proposed here to solve the problem of negative δ13C excursions during the Ediacaran, by viewing them in terms of a linked carbon-sulfur-oxygen system, whereby changes in oxidant dynamics caused an excess of organic carbon oxidation over burial, resulting in a smaller DOM reservoir. The amount of oxidant required to achieve a deep negative carbon isotope excursion through net organic carbon oxidation may reasonably result from basin-scale evaporite dissolution.
Downloads
References
Bristow, T.F. & Kennedy, M.J. (2008). Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 36: 863-866. https://doi.org/10.1130/G24968A.1
Burke, A.; Present, T.M.; Paris, G.; Rae, E.C.M.; Sandilands, B.H.; Gaillardet, J.; Peucker-Ehrenbrink, B.; Fischer, W.W.; McClelland, J.W.; Spencer, R.G.M.; Voss, B.M. & Adkins, J.F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Sciences Letters, 496: 168-177. https://doi.org/10.1016/j.epsl.2018.05.022
Burns, S.J. & Matter, A. (1993). Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologica Helvetiae, 86: 595-607.
Calver, C.R. (2000). Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 100: 121-150. https://doi.org/10.1016/S0301-9268(99)00072-8
Campbell, I.H. & Squire, R.J. (2010). The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74: 4187-4206. https://doi.org/10.1016/j.gca.2010.04.064
Chen, X.; Ling, H.-F.; Vance, D.; Shields-Zhou, G.A.; Zhu, M.; Poulton, S.W.; Och, L.M.; Jiang, S.-Y.; Li, D.; Cremonese, L. & Archer, C. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6: 1-7. https://doi.org/10.1038/ncomms8142 PMid:25980960 PMCid:PMC4479002
Condon, D.; Zhu, M.; Bowring, S.; Wang, W.; Yang, A. & Jin, Y. (2005). U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science, 308: 95-98. https://doi.org/10.1126/science.1107765 PMid:15731406
Derry, L.A. (2010). A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294: 152-162. https://doi.org/10.1016/j.epsl.2010.03.022
Evans, D.A.D. (2006). Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, 444: 51-55. https://doi.org/10.1038/nature05203 PMid:17080082
Fakhraee, M.; Hancisse, O.; Canfield, D.E.; Crowe, S.A. & Katsev, S. (2019). Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nature Geoscience, 12: 375-380. https://doi.org/10.1038/s41561-019-0351-5
Garrels, R.M. & Lerman, A. (1984). Coupling of the sedimentary sulfur and carbon cycles - an improved model. American Journal of Science, 284: 989-1007. https://doi.org/10.2475/ajs.284.9.989
Gong, Z.; Kodama, K.P. & Li, Y.X. (2017). Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion. Precambrian Research, 289: 62-74. https://doi.org/10.1016/j.precamres.2016.12.002
Grotzinger, J.P.; Fike, D.A. & Fischer, W.W. (2011). Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4: 285-292. https://doi.org/10.1038/ngeo1138
Guilbaud, R.; Poulton, S.W.; Butterfield, N.J.; Zhu, M. & Shields-Zhou, G.A. (2015). A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience, 8:466-470. https://doi.org/10.1038/ngeo2434
He, T.; Zhu, M.; Mills, B.J.W.; Wynn, P.M.; Zhuravlev, A.Y.; Tostevin, R.; Strandmann, P.A.E.P. Von, Yang, A.; Poulton, S.W. & Shields, G.A. (2019). Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 12: 468-474. https://doi.org/10.1038/s41561-019-0357-z PMid:31178922 PMCid:PMC6548555
Kaufman, A.J.; Knoll, A.H. & Narbonne, G.M. (1997). Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences USA, 94: 6600-6605. https://doi.org/10.1073/pnas.94.13.6600 PMid:11038552 PMCid:PMC21204
Kendall, B.; Komiya, T.; Lyons, T.W.; Bates, S.M.; Gordon, G.W.; Romaniello, S.J.; Jiang, G.; Creaser, R.A.; Xiao, S.; McFadden, K.; Sawaki, Y.; Tahata, M.; Shu, D.; Han, J.; Li, Y.; Chu, X. & Anbar, A.D. (2015). Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late ediacaran period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025
Krissansen-Totton, J.; Buick, R. & Catling, D.C. (2015). A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen. American Journal of Science, 315: 275-316. https://doi.org/10.2475/04.2015.01
Lang, X.; Shen, B.; Peng, Y.; Xiao, S.; Zhou, C.; Bao, H.; Kaufman, A.J.; Huang, K.; Crockford, P.W. & Liu, Y. (2018). Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x PMid:30068999 PMCid:PMC6070556
Le Heron, D.P.; Vandyk, T.M.; Kuang, H.; Liu, Y.; Chen, X.; Wang, Y.; Yang, Z.; Scharfenberg, L.; Davies, B. & Shields, G. (2019). Bird ' s-eye view of an Ediacaran subglacial landscape, 47: 1-5. https://doi.org/10.1130/G46285.1
Lee, C.; Love, G.D.; Fischer, W.W.; Grotzinger, J.P. & Halverson, G.P. (2015). Marine organic matter cycling during the Ediacaran Shuram excursion. Geology, 43: 1103-1106. https://doi.org/10.1130/G37236.1
Lenton, T.M.; Boyle, R.A.; Poulton, S.W.; Shields-Zhou, G.A. & Butterfield, N.J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257-265. https://doi.org/10.1038/ngeo2108
Li, C.; Hardisty, D.S.; Luo, G.; Huang, J.; Algeo, T.J.; Cheng, M.; Shi, W.; An, Z.; Tong, J.; Xie, S.; Jiao, N. & Lyons, T.W. (2017). Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology, 15: 211-224. https://doi.org/10.1111/gbi.12222 PMid:27997754
Lu, M.; Zhu, M.; Zhang, J.; Shields-Zhou, G.; Li, G.; Zhao, F.; Zhao, X. & Zhao, M. (2013). The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Research, 225: 86-109. https://doi.org/10.1016/j.precamres.2011.10.018
Melezhik, V.; Fallick, A.E. & Pokrovsky, B.G. (2005). Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle. Precambrian Research, 137: 131-165. https://doi.org/10.1016/j.precamres.2005.03.010
Prince, J.K.G.; Rainbird, R.H. & Wing, B.A. (2019). Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur. Geology, 47 (4): 375-379. https://doi.org/10.1130/G45464.1
Pu, J.P.; Bowring, S.A.; Ramezani, J.; Myrow, P.; Raub, T.D.; Landing, E.; Mills, A.; Hodgin, E. & Macdonald, F.A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44 (11): 955-958. https://doi.org/10.1130/G38284.1
Rothman, D.H.; Hayes, J.M. & Summons, R.E. (2003). Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences USA, 100: 8124-8129. https://doi.org/10.1073/pnas.0832439100 PMid:12824461 PMCid:PMC166193
Sahoo, S.K.; Planavsky, N.J.; Kendall, B.; Wang, X.; Shi, X.; Scott, C.; Anbar, A.D.; Lyons, T.W. & Jiang, G. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445 PMid:23018964
Schmid, S. (2017). Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia). Precambrian Research, 290: 16-31. https://doi.org/10.1016/j.precamres.2016.12.004
Schrag, D.P.; Higgins, J.A.; Macdonald, F.A. & Johnston, D.T. (2013). Authigenic carbonate and the history of the global carbon cycle. Science 339: 540-543, https://doi.org/10.1126/science.1229578 PMid:23372007
Schroder, S.; Schreiber, B.C.; Amthor, J.E. & Matter, A. (2004). Stratigraphy and environmental conditions of the terminal Neoproterozoic-Cambrian Period in Oman: evidence from sulfur isotopes. Journal of the Geological Society of London, 161: 489-499. https://doi.org/10.1144/0016-764902-062
Shi, W.; Li, C.; Luo, G.; Huang, J.; Algeo, T.J.; Jin, C.; Zhang, Z. & Cheng, M. (2018). Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology, 46: 267-270. https://doi.org/10.1130/G39663.1
Strauss, H. (1993). The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record. Precambrian Research, 63(34): 225-246. https://doi.org/10.1016/0301-9268(93)90035-Z
Tostevin, R.; Clarkson, M.O.; Gangl, S.; Shields, G.A.; Wood, R.A.; Bowyer, F.; Penny, A.M. & Stirling, C.H. (2019). Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506: 104-112. https://doi.org/10.1016/j.epsl.2018.10.045
Turner, E.C. & Bekker, A. (2016). Thick sulfate evaporite accumulations marking a mid-neoproterozoic oxygenation event (ten stone formation, Northwest territories, Canada). Bulletin of the Geological Society of America, 128(1-2): 203-222. https://doi.org/10.1130/B31268.1
Wortmann, U.G. & Paytan, A. (2012). Rapid variability of seawater chemistry over the past 130 million years. Science, 337: 334-336. https://doi.org/10.1126/science.1220656 PMid:22822148
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.