Fraccionamiento geoquímico de elementos traza en conchas de ostreidos y gasterópodos: Un indicador potencial de contaminación por metales pesados en ambientes costeros de Ghana

Autores/as

DOI:

https://doi.org/10.3989/egeol.45247.1085

Palabras clave:

Crassostrea, metales traza, contaminación, mangler

Resumen


El contenido en elementos traza de Crassostrea tulipa (Ostreidae, Bivalvia) de cuatro localidades (Estuario del Río Pra, Estuario del Río Densu, Playa Kpone y Arroyo Anyanui) a lo largo de la costa de Ghana ha sido utilizado como un bioindicador de contaminación ambiental. Los valores más bajos en metales pesados corresponden a las conchas de Crassostrea del Estuario del Densu y el Arroyo Anyanui, mientras que los más altos se han registrado en las conchas el Estuario del Río Pra y Playa Kpone. El Estuario del Río Densu y el Arroyo Anyanui se localizan en áreas no afectadas por grandes industrias, y únicamente el Estuario del Densu se localiza en un área densamente urbanizada. Las conchas de Crassostrea del Estuario del Densu presentan enriquecimiento principalmente de Ni. Sin embargo, el contenido total en carbono orgánico del sedimento en el Estuario del Densu indica polución orgánica de origen antropogénico, pese a no existir evidencias en la composición de elementos traza en las conchas de Crassostrea. Los especímenes procedentes del Estuario del Pra muestran enriquecimiento en la mayoría de los elementos traza estudiados (Li, Be, V, Cu, Cr, Zn, Ga, Y, Sn, Pb, U, Th, ∑REE y As). Este enriquecimiento está relacionado con el aporte de metales pesados al Río Pra en relación con las actividades mineras, la deforestación extensiva y la consecuente pérdida de suelos. Las conchas de Crassostrea de Playa Kpone presentan un comparativamente alto contenido en algunos elementos traza (Be, Ba, Cu, Zn, Nb, Pb, y ∑REE). Los contaminantes metálicos están relacionados con los aportes del Área de Industria Pesada de Tema (localizada a unos 3.5 km al oeste de Playa Kpone) junto con los residuos urbanos del área metropolitana de Accra. El alto contenido en Ba, Cu, Zn, y Pb en Crassostrea está directamente relacionado con la alta productividad de fitoplancton (principalmente diatomeas) que transfiere metales traza a la red trófica marina. Además, algunos análisis realizados en conchas de gasterópodos de Playa Kpone indicant que Cerithium y Nerita son más sensibles a la acumulación de Ni y As que Crassostrea. Teniendo en cuenta la utilidad de las conchas de Crassostrea como bioindicadores de contaminación por metales pesados, los ecosistemas menos contaminados corresponden a las localidades de Arroyo Anyanui y Esturio del Río Densu, mientras que  el Estuarío del Río Para y la Playa Kpone están afectados por actividades antrópicas tales como la minería, los vertidos urbanos y los industriales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adokoh, C. K., Obodai, E. A., Essumang, D. K., Serfor-Armah, Y., Nyarko, B. J. B., & Asabere-Ameyaw, A. (2011). Statistical evaluation of environmental contamination, distribution and source assessment of heavy metals (aluminum, arsenic, cadmium, and mercury) in some lagoons and an estuary along the coastal belt of Ghana. Archives of Environmental Contamination and Toxicology, 61, 389-400. https://doi.org/10.1007/s00244-011-9643-5 PMid:21308369

Afum, B. O., & Owusu, C. K. (2016). Heavy metal pollution in the Birim River of Ghana. International Journal of Environmental Monitoring and Analysis, 4, 65-74. https://doi.org/10.11648/j.ijema.20160403.11

Ajonina, G., Diamé, A., & Kairo, J. (2008). Current status and conservation of mangroves in Africa, An overview. World Rainforest Movement Bulletin, 133, 1-6.

Akita, L. G., Laudien, J., & Nyarko, E. (2020). Geochemical contamination in the Densu Estuary, Gulf of Guinea, Ghana. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10035-4

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals, Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305

Amonoo-Neizer, E. H., Nyamah, D., & Bakiamoh, S. B. (1996). Mercury and arsenic pollution in soil and biological samples around the mining town of Obuasi, Ghana. Water, Air, and Soil Pollution, 91, 363-373. https://doi.org/10.1007/BF00666270

Armah, F. A., Quansah, R., & Luginaah, I. (2014). A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. International Scholarly Research Notices, 252148. https://doi.org/10.1155/2014/252148 PMid:27351015 PMCid:PMC4897542

Awotwi, A., Anornu, G. K., Quaye-Ballard, J. A., & Annor, T. (2018). Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986-2025. Land Degradation and Development, 29, 3331-3343. https://doi.org/10.1002/ldr.3093

Azmy, K., Brand, U., Sylvester, P., Gleeson, S. A., Logan, A., & Bitner, M. A. (2011). Biogenic and abiogenic low-Mg calcite (bLMC and aLMC), Evaluation of seawater-REE composition, water masses and carbonate diagenesis. Chemical Geology, 280, 180-190. https://doi.org/10.1016/j.chemgeo.2010.11.007

Baeza-Carratalá, J. F., Reolid, M., Giannetti, A., Benavente, D., & Cuevas-González, J. (2021). Coupling of trace elements in brachiopod shells and biotic signals from the Lower Jurassic South-Iberian Palaeomargin (SE Spain), Implications for the environmental perturbation around the early Toarcian Mass Extinction Event. Estudios Geológicos, 77, e141.

Babut, M., Sekyi, R., Rambaud, A., Potin-Gautier, M., Tellier, S., Bannerman, W., & Beinhoff, C. (2003). Improving the environmental management of small-scale gold mining in Ghana, a case study of Dumasi. Journal of Cleaner Production, 11, 215-221. https://doi.org/10.1016/S0959-6526(02)00042-2

Benito, M. I., & Reolid, M. (2012). Belemnite taphonomy (Upper Jurassic, Western Tethys) part II, Fossil-diagenetic analysis including combined petrographic and geochemical techniques. Palaeogeography, Palaeoclimatology, Palaeoecology, 358-360, 89-108. https://doi.org/10.1016/j.palaeo.2012.06.035

Bertram, M. A., & Cowen, J. P. (1997). Morphological and compositional evidence for biotic precipitation of marine barite. Journal of Marine Research, 55, 577-593. https://doi.org/10.1357/0022240973224292

Boening, D. W. (1999). An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environmental Monitoring and Assessment, 55, 459-470. https://doi.org/10.1023/A:1005995217901

Botwe, B. O., Kelderman, P., Nyarko, E., & Lens, P. N. L. (2017a). Assessment of DDT, HCH and PAH contamination and associated ecotoxicological risks in surface sediments of coastal Tema Harbour (Ghana). Marine Pollution Bulletin, 115, 480-488. https://doi.org/10.1016/j.marpolbul.2016.11.054 PMid:27916245

Botwe, B. O., Schirone, A., Delbono, I., Barsanti, M., Delfanti, R., Kelderman, P., Nyarko, E., & Lens, P. N. L. (2017b). Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). Journal of Radiation Research and Applied Sciences, 10, 63-71. https://doi.org/10.1016/j.jrras.2016.12.002

Brand, U., Logan, A., Hiller, N., & Richardson, J. (2003). Geochemistry of modern brachiopods, applications and implications or oceanography and paleoceanography. Chemical Geology, 198, 305-334. https://doi.org/10.1016/S0009-2541(03)00032-9

Brannon, A. C., & Rao, K. R. (1979). Barium, strontium and calcium levels in the exoskeleton, hepatopancreas and abdominal muscle of the grass shrimp, Palaemonetes pugio, relation to molting and exposure to barite. Comparative Biochemistry and Physiology Part A, Physiology, 63, 261-274. https://doi.org/10.1016/0300-9629(79)90158-0

Cabrita, M. T., Brito, P., Caçador, I., & Duarte, B. (2020). Impacts of phytoplankton blooms on trace metal recycling and bioavailability during dredging events in the Sado estuary (Portugal). Marine Environmental Research, 153, 104837. https://doi.org/10.1016/j.marenvres.2019.104837 PMid:31740070

Calvert, S. E., & Pedersen, T. F. (1993). Geochemistry of recent oxic and anoxic marine sediments, implications for the geological record. Marine Geology, 113, 67-88. https://doi.org/10.1016/0025-3227(93)90150-T

Carell, B., Forberg, S., Grundelius, E., Henrikson, L., Johnels, A., Lindh, U., Mutvel, H., Olsson, M., Svardstrom, K., & Westermark, T. (1987). Can mussel shells reveal environmental history? Ambio, 16, 2-10.

Carriker, M. R., Swann, C. P., & Ewart, J. W. (1982). An exploratory study with the proton micro-probe of the ontogenetic distribution of 16 elements in the shell of living oysters (Crassostrea virginica). Marine Biology, 69, 235-246. https://doi.org/10.1007/BF00397489

Cheng, L., Fenter, P., Sturchio, N. C., Zhong, Z., & Bedzyk, M. J. (1999). X-ray standing wave study or arsenite incorporation at the calcite surface. Geochimica et Cosmochimica Acta, 63, 3153-3157. https://doi.org/10.1016/S0016-7037(99)00242-2

Chevrollier, L. A., Koski, M., Sondergaard, J., Trapp, S., Aheto, D. W., Darpaah, G., & Nielse, T. G. (2022). Bioaccumulation of metals in the planktonic food web in the Gulf of Guinea. Marine Pollution Bulletin, 179, 113662. https://doi.org/10.1016/j.marpolbul.2022.113662 PMid:35490487

Clark, J. V., Pérez-Huerta, A., Gillikin, D. P., Aldridge, A. E., Reolid, M., & Endo, K. (2016). Determination of paleoseasonality of fossil brachiopods using shell spiral deviations and chemical proxies. Palaeoworld, 25, 662-674. https://doi.org/10.1016/j.palwor.2016.05.010

Cognie, B., Laurent, B., & Rincé, Y. (2001). Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries and Coasts, 24, 126-134. https://doi.org/10.2307/1352819

Comans, R. N. J., & Middelburg, J. J. (1987). Sorption of trace metals on calcite, applicability of the surface precipitation model. Geochimica et Cosmochimica Acta, 51, 2587-2591. https://doi.org/10.1016/0016-7037(87)90309-7

Dar, M. A., Belal, A. A., & Madkour, A. G. (2018). The differential abilities of some molluscs to accumulate heavy metals within their shells in the Timsah and the Great Bitter lakes, Suez Canal, Egypt. Egyptian Journal of Aquatic Research, 44, 291-298. https://doi.org/10.1016/j.ejar.2018.11.008

De Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N. R., Goderis, S., Van Malderen, S. J. M., Snoeck, C., Goolaerts, S., Vanhaeckem, F., & Claeys, P. (2019). Shell chemistry of the Boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates, and life cycle of an extinct Cretaceous oyster. Biogeosciences, 17, 2897-2922. https://doi.org/10.5194/bg-17-2897-2020

Debrah, C. (1999). Speciation of heavy metals in waters and sediment from the Densu Basin [Unpublished MsC dissertation]. University of Ghana.

Dimock, R. V. (1967). An examination of physiological variation in the American oyster, Crassostrea virginica [Unpublished doctoral dissertation]. Florida State University.

Donkor, A. K., Bonbzongo, J. C. J., Nartey, V. K., & Adotey, D. K. (2005). Heavy metals in sediments of the gold mining impacted Pra River basin, Ghana, West Africa. Soil & Sediment Contamination, 14, 479-503. https://doi.org/10.1080/15320380500263675

Du, Y., Lian, F., & Zhu, L. (2011). Biosorption of divalent Pb, Cd, and Zn on aragonite and calcite mollusc shells. Environmental Pollution, 159, 1763-1768. https://doi.org/10.1016/j.envpol.2011.04.017 PMid:21550150

Duncan, A. E., de Vries, N., & Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, and Soil Pollution, 229, 1-10. https://doi.org/10.1007/s11270-018-3899-6 PMid:30147192 PMCid:PMC6096550

Dupont, C. L., Buck, K. N., Palenik, B., & Barbeau, K. (2010). Nickel utilization in phytoplankton assemblages from contrasting ocean regimes. Deep Sea Research I, 57, 533-566. https://doi.org/10.1016/j.dsr.2009.12.014

Edward, F. E., Yap, C. Y., Ismail, A., & Tan, S. G. (2009). Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves. Water, Air, and Soil Pollution, 196, 297-309. https://doi.org/10.1007/s11270-008-9777-x

Effah, E., Aheto, D. W., Acheampong, E., Tulashie, S. K., & Adotey, J. (2021). Human health risk assessment from heavy metals in three dominant fish species of the Ankobra river, Ghana. Toxicology Reports, 8, 1081-1086. https://doi.org/10.1016/j.toxrep.2021.05.010 PMid:34113547 PMCid:PMC8170148

El-Sorogy, A., & Youssef, M. (2015). Assessment of heavy metal contamination in intertidal gastropod and bivalve shells from central Arabian Gulf coastline, Saudi Arabia. Journal of African Earth Sciences, 111, 41-53. https://doi.org/10.1016/j.jafrearsci.2015.07.012

Fianko, J., Osae, S., Adomako, D., Adotey, D. K., & Serfor-Armah, Y. (2007). Assessment of heavy metal pollution of the Iture Estuary in the central region of Ghana. Environmental Monitoring and Assessment, 131, 467-473. https://doi.org/10.1007/s10661-006-9492-2 PMid:17171259

Findlater, G., Shelton, A., Rolin, T., & Andrews, J. (2014). Sodium and strontium in mollusc shells: Preservation, palaeosalinity, and palaeotemperature of the Middle Pleistocene of eastern England. Proceedings of the Geologists' Association, 125, 14-19. https://doi.org/10.1016/j.pgeola.2013.10.005

Galimany, E., Lunt, J., Freeman, C. J., Reed, S., Segura-García, I., & Paul, V. J. (2017). Feeding behavior of eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria in shallow estuaries. Marine Ecology Progress Series, 567, 125-137. https://doi.org/10.3354/meps12050

Gbogbo, F., & Otoo, S. D. (2015). The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: Public health and phytoremediation implications. Environmental Monitoring and Assessment, 187, 655. https://doi.org/10.1007/s10661-015-4880-0 PMid:26423633

Gerdes, D. (1983). The Pacific oyster Crassostrea gigas: Part I. Feeding behaviour of larvae and adults. Aquaculture, 31, 195-219. https://doi.org/10.1016/0044-8486(83)90313-7

Gildeeva, O., Akita, L. G., Biehler, J., Frenzel, P., & Alivernini, M. (2021). Recent brackish water foraminifera and ostracoda from two estuaries in Ghana, and their potential as (palaeo) environmental indicators. Estuarine, Coastal and Shelf Science, 256, 107270. https://doi.org/10.1016/j.ecss.2021.107270

Gillikin, D. P., Dehairs, F., Lorrain, A., Steenmans, D., Baeyens, W., & André, L. (2006). Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleochemistry reconstruction. Geochimica et Cosmochimica Acta, 70, 395-407. https://doi.org/10.1016/j.gca.2005.09.015

González-Dávila, M. (1995). The role of phytoplankton cells on the control of heavy metal concentration in seawater. Marine Chemistry, 48, 215-236. https://doi.org/10.1016/0304-4203(94)00045-F

González-Muñoz, M. T., Martínez-Ruiz, F., Morcillo, F., Martín-Ramos, J. D., & Paytan, A. (2012). Precipitation of barite by marine bacteria: A possible mechanism for marine barite formation. Geology, 40, 675-678. https://doi.org/10.1130/G33006.1

Goodwin, D. H., Gillikin, D. P., & Roopnarine, P. D. (2013). Preliminary evaluation of potential stable isotope and trace element productivity proxies in the oyster Crassostrea gigas. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 88-97. https://doi.org/10.1016/j.palaeo.2012.03.034

Gupta, S. K., & Singh, J. (2011). Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: A review. IIOAB Journal, 2, 49-57.

Hagan, G. B., Ofosu, F. G., Hayford, E. K., Osae, E. K., & Oduro-Afriyie, K. (2011). Heavy metal contamination and physico-chemical assessment of the Densu River Basin in Ghana. Research Journal of Environmental and Earth Sciences, 3, 385-392.

Haris, H., Aris, A. Z., Mokhtar, M. B., & Looi, L. J. (2020). The accumulation of metals and methylmercury in Nerita lineata and the relation to intertidal surface sediment concentrations. Chemosphere, 245, 125590. https://doi.org/10.1016/j.chemosphere.2019.125590 PMid:31874324

His, E., & Maurer, D. (1988). Shell growth and gross biochemical composition of oyster larvae (Crassostrea gigas) in the field. Aquaculture, 69, 185-194. https://doi.org/10.1016/0044-8486(88)90195-0

Huanxin, W., Lejun, Z., & Presley, B. J. (2000). Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell. Environmental Geology, 39, 1216-1226. https://doi.org/10.1007/s002540000110

Jeandel, C., Tachikawa, K., Bory, A., & Dehairs, F. (2000). Biogenic barium in suspended and trapped material as a tracer of export production in the tropical NE Atlantic (EUMELI sites). Marine Chemistry, 71, 125-142. https://doi.org/10.1016/S0304-4203(00)00045-1

Joiris, C. R., Holsbeek, L., & Otchere, F. A. (2000). Mercury in the bivalves Crassostrea tulipa and Perna perna from Ghana. Marine Pollution Bulletin, 40, 457-460. https://doi.org/10.1016/S0025-326X(00)00014-X

Keul, N., Langer, G., De Nooijer, L. J., Nehrke, G., Reichart, G. J., & Bijma, J. (2013). Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochemistry, Geophysics, Geosystems, 14, 102-111. https://doi.org/10.1029/2012GC004330

Lazareth, C. E., Van der Putten, E., André, L., & Dehairs, F. (2003). High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: A record of environmental spatio-temporal variations? Estuarine, Coastal and Shelf Science, 57, 1103-1114. https://doi.org/10.1016/S0272-7714(03)00013-1

McManus, J., Berelson, W. M., Hammond, D. E., & Klinkhammer, G. P. (1999). Barium cycling in the North Pacific: Implication for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography, 14, 62-73. https://doi.org/10.1029/1998PA900007

Mahu, E., Nyarko, E., Hulme, S., & Coale, K. H. (2015). Distribution and enrichment of trace metals in marine sediments from the Eastern Equatorial Atlantic, off the Coast of Ghana in the Gulf of Guinea. Marine Pollution Bulletin, 98, 301-307. https://doi.org/10.1016/j.marpolbul.2015.06.044 PMid:26139460

Mahu, E., Nyarko, E., Hulme, S., Swarzenski, P., Asiedu, D. K., & Coale, K. H. (2016). Geochronology and historical deposition of trace metals in three tropical estuaries in the Gulf of Guinea. Estuarine, Coastal and Shelf Science, 177, 31-40. https://doi.org/10.1016/j.ecss.2016.05.007

Mahu, E., Sanko, S., Kamara, A., Chuku, E. O., Effah, E., Sohou, Z., Zounon, Y., Akinjogunla, V., Akinningbagbe, R. O., Diadhiou, H. D., & Marchant, R. (2022). Climate resilience and adaptation in West African Oyster Fisheries, An expert-based assessment of the vulnerability of the oyster Crassostrea tulipa to climate change. Fishes, 7, 205. https://doi.org/10.3390/fishes7040205

Marchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T., & Montagna, P. (2018). A simple biomineralization model to explain Li, Mg and Sr incorporation into aragonitic foraminifera and corals. Earth and Planetary Science Letters, 481, 20-29. https://doi.org/10.1016/j.epsl.2017.10.022

Markulin, K., Peharda, M., Mertz-Kraus, R., Schone, B. R., Uvanovic, H., Kovac, Z., & Janekovic, I. (2019). Trace and minor element record in aragonitic bivalve shells as environmental proxies. Chemical Geology, 507, 120-133. https://doi.org/10.1016/j.chemgeo.2019.01.008

Mil-Homens, M., Branco, V., Vale, C., Boer, W., Alt-Epping, U., Abrantes, F., & Vicente, M. (2009). Sedimentary record of anthropogenic metal inputs in the Tagus prodelta (Portugal). Continental Shelf Research, 29, 381-392. https://doi.org/10.1016/j.csr.2008.10.002

Montagna, P., McCulloch, M., Taviani, M., Remia, A., & Rouse, G. (2005). High-resolution trace and minor element compositions in deep-water scleractinian corals (Desmophyllum dianthus) from the Mediterranean Sea and the Great Australian Bight. In A. Freiwald & J. M. Roberts (Eds.), Cold-water Corals and Ecosystems (pp. 1109-1126). Springer. https://doi.org/10.1007/3-540-27673-4_56

Moore, R. W., Webb, R., Tokarczyk, R., & Wever, R. (1996). Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures. Journal of Geophysical Research, 101, 20899-20908. https://doi.org/10.1029/96JC01248

Morse, J. W., & MacKenzie, F. T. (1990). Geochemistry of sedimentary carbonates. Developments in Sedimentology 48. Elsevier.

Morse, J. W., Arvidson, R. A., & Lüttge, A. (2007). Calcium carbonate formation and dissolution. Chemical Reviews, 197, 342-381. https://doi.org/10.1021/cr050358j PMid:17261071

Nalewajko, G., Lee, K., & Jack, T. R. (1995). Effects of vanadium on freshwater phytoplankton photosynthesis. Water, Air, and Soil Pollution, 81, 93-105. https://doi.org/10.1007/BF00477258

Nicolaidou, A., & Nott, J. A. (1999). The role of the marine gastropod Cerithium vulgatum in the biogeochemical cycling of metals. In J. S. Gray, W. Ambrose, & A. Szaniawska (Eds.), Biogeochemical Cycling and Sediment Ecology (pp. 137-146). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-4649-4_7

Nordberg, G. F., Sandstrom, B., Becking, G., & Goyer, R. A. (2002). Essentiality and toxicity of metals. In B. Sarkar (Ed.), Heavy metals in the environment (pp. 1-34). Marcel Dekker. https://doi.org/10.1201/9780203909300.ch1

Nyarko, E., Boateng, C. M., Asamoah, O., Edusei, M. O., & Mahu, E. (2023). Potential Human Health Risks Associated with Ingestion of Heavy Metals through Fish Consumption in the Gulf of Guinea. Toxicology Reports, 10, 117-123. https://doi.org/10.1016/j.toxrep.2023.01.005 PMid:36698915 PMCid:PMC9869475

Nyarko, E., Fletcher, A., Addo, S., Foli, B., Foli, K., & Mahu, E. (2014). Geochemical assessment of heavy metals in surface sediments, a case study of the Tema Port, Ghana. Journal of Shipping and Ocean Engineering, 4, 79-92.

Obodai, E., Boamponsem, L. K., Odokoh, C. K., Essumang, D. K., Villawoe, E. A., Aheto, D. W., & Debrah, J. S. (2011). Concentrations of heavy metals in two Ghanaian Lagoons. Advances in Applied Science Research, 3, 177-187.

Otchere, F. A. (2003). Heavy metals concentrations and burden in the bivalves (Anadara (Senilia) senilis, Crassostrea tulipa and Perna perna) from lagoons in Ghana, Model to describe mechanism of accumulation/excretion. African Journal of Biotechnology, 2, 280-287. https://doi.org/10.5897/AJB2003.000-1057

Otchere, F. A., Joiris, C. R., & Holsbeek, L. (2003). Mercury in the bivalves Anadara (Senilia) senilis, Perna perna and Crassostrea tulipa from Ghana. Science of the Total Environment, 304, 369-375. https://doi.org/10.1016/S0048-9697(02)00582-X PMid:12663197

Pérez-Huerta, A., Etayo-Cadavid, M. F., Andrus, C. F. T., Jeffries, T. E., Watkins, C., Street, S. C., & Sandweiss, D. H. (2013). El Niño Impact on mollusk biomineralization, Implications for trace element proxy reconstructions and the paleo-archeological record. Plos One, 8, e54274. https://doi.org/10.1371/journal.pone.0054274 PMid:23405078 PMCid:PMC3566134

Paquette, J., & Reeder, R. J. (1995). Relationships between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta, 59, 735-749. https://doi.org/10.1016/0016-7037(95)00004-J

Prakash Babu, C., Brumsack, H. J., Schnetger, B., & Böttcher, M. E. (2002). Barium as a productivity proxy in continental margin sediments, a study from the eastern Arabian Sea. Marine Geology, 184, 189-206. https://doi.org/10.1016/S0025-3227(01)00286-9

Raddatz, J., & Rüggeberg, A. (2019). Constraining past environmental changes of cold-water coral mounds with geochemical proxies in corals and foraminifera. The Depositional Record, 7, 200-222. https://doi.org/10.1002/dep2.98

Raddatz, J., Ruggeberg, A., Flogel, S., Hathorne, E. C., Liebetrau, V., Eisenhauer, A., & Dullo, W. C. (2014). The influence of seawater pH on U/Ca ratios in the scleractinian cold-water coral Lophelia pertusa. Biogeosciences, 11, 1863-1871. https://doi.org/10.5194/bg-11-1863-2014

Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates, Why and so what? Environment Pollution, 120, 497-507. https://doi.org/10.1016/S0269-7491(02)00238-5 PMid:12442773

Rebelo, M., Amaral, M. C. R., & Pfeiffer, W. C. (2005). Oyster condition index in Crassostrea rhizophorae (Guilding, 1828) from a heavy-metal polluted coastal lagoon. Brazilian Journal of Biology, 65, 345-351. https://doi.org/10.1590/S1519-69842005000200019 PMid:16097738

Reeder, R. J., Lamble, G. M., & Northrup, P. A. (1999). XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. American Mineralogist, 84, 1049-1060. https://doi.org/10.2138/am-1999-7-807

Reolid, M., Reolid, J., Betzler, C., & Lindhorst, S. (2023). Chemical fractionation from benthic faunas in Saya de Malha Bank (Mascarene Plateau, western Indian Ocean), vital and habitat effects. Continental Shelf Research, 266, 105078. https://doi.org/10.1016/j.csr.2023.105078

Richardson, C. (2001). Molluscs as archives of environmental change. Oceanography and Marine Biology, 39, 103-164.

Roda, M. S., Griesshaber, E., Angiolini, L., Rollion-Bard, C., Harper, E. M., Bitner, M. A., Milner García, S., Ye, F., Henkel, D., Häussermann, V., Eisenhauer, A., Gnägi, H., Brand, U., Logan, A., & Schmahl, W. W. (2021). The architecture of recent brachiopod shells, diversity of biocrystal and biopolymer assemblages in rhynchonellie, terebratulide, thecideide and craniide shells. Marine Biology, 169, 4. https://doi.org/10.1007/s00227-021-03962-4

Rosales, I., Quesada, S., & Robles, S. (2004). Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 253-275. https://doi.org/10.1016/S0031-0182(03)00686-2

Russell, A. D., Emerson, S., Nelson, B., Erez, J., & Lea, D. W. (1994). Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochimica et Cosmochimica Acta, 58, 671-681. https://doi.org/10.1016/0016-7037(94)90497-9

Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E., & Algeo, T. J. (2015). Total organic carbon, organic phosphorous, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Science Reviews, 149, 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017

Schone, B. R., Zhang, Z. J., Redermaacher, P., Thébault, J., Jacob, D. E., Nunn, E. V., & Maurer, A. F. (2011). Sr/Ca and Mg/Ca ratios of ontogenetically old, long lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 52-64. https://doi.org/10.1016/j.palaeo.2010.03.016

Seth, B., & John, B. (2016). Physico-chemical characterization of River Pra in the western region, Ghana. International Journal of Scientific & Engineering Research, 7, 1396-1404.

Sidoumou, Z., Gnassia-Barelli, M., Siau, Y., Morton, V., & Roméo, M. (2006). Heavy metal concentrations in molluscs from the Senegal coast. Environment International, 32, 384-387. https://doi.org/10.1016/j.envint.2005.09.001 PMid:16243398

Smrzka, D., Zwicker, J., Bach, W., Feng, D., Himmler, T., Chen, D., & Peckmann, J. (2019). The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals, a review. Facies, 65, 41. https://doi.org/10.1007/s10347-019-0581-4

Stecher, H. A., Krantz, D. E., Lord, C. J., Luther, G. W., & Bock, K. W. (1996). Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochimica et Cosmochimica Acta, 60, 3445-3456. https://doi.org/10.1016/0016-7037(96)00179-2

Stipp, S. L., & Hochella, M. F. J. (1991). Structure and bonding environments at the calcite surface observed with X-ray photoelectron spectroscopy (XPS) and low energy diffraction (LEED). Geochimica et Cosmochimica Acta, 55, 1723-1736. https://doi.org/10.1016/0016-7037(91)90142-R

Szymanska-Walkiewicz, M., Glinska-Lewczuk, K., Burandt, P., & Obolewski, K. (2022). Phytoplankton sensitivity to heavy metals in Baltic Coastal Lakes. International Journal of Environment Research and Public Health, 19, 4131. https://doi.org/10.3390/ijerph19074131 PMid:35409822 PMCid:PMC8998715

Tarique, Q., Burger, J., & Reinfelder, J. R. (2019). Size scaling of contaminant trace metal accumulation in the infaunal marine clam Amiantis umbonella. Archives of Environmental Contamination and Toxicology, 77, 368-376. https://doi.org/10.1007/s00244-019-00659-0 PMid:31359071

Tay, C. K., Asmah, R., & Biney, C. A. (2009). Trace metal levels in water and sediment from the Sakumo II and Muni lagoons, Ghana. West African Journal of Applied Ecology, 16, 75-94. https://doi.org/10.4314/wajae.v16i1.55870

Thébault, J., Chauvaud, L., Helguen, L., Clavier, J., & Pe, C. (2009). Barium and molybdenum records in bivalve shells, geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography, 54, 1002-1014. https://doi.org/10.4319/lo.2009.54.3.1002

Thébault, J., Jolivet, A., Waeles, M., Tabouret, H., Sabarot, S., Pécheuran, C., Leynaert, A., Jochum, K. P., Schöne, B. R., Fröhlich, L., Sibert, V., Amice, E., & Chauvaud, L. (2022). Scallop shells as geochemical archives of phytoplankton-related ecological processes in a temperate coastal ecosystem. Limnology and Oceanography, 67, 187-202. https://doi.org/10.1002/lno.11985

Tribovillard, N., Algeo, T., Lyons, T., & Riboulleau, A. (2006). Trace metals as palaeoredox and palaeoproductivity proxies, an update. Chemical Geology, 232, 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012

Ullmann, C. V., Szucs, D., Jiang, M., Hudson, A. J. L., & Hesselbo, S. P. (2022). Geochemistry of macrofossil, bulk rock and secondary calcite in the Early Jurassic strata of the Llanbedr (Mochras Farm) drill core, Cardigan Bay Basin, Wales, UK. Journal of the Geological Society, 179, jgs2021-018. https://doi.org/10.1144/jgs2021-018

Usero, J., Morillo, J., & Gracia, I. (2005). Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere, 59, 1175-1181. https://doi.org/10.1016/j.chemosphere.2004.11.089 PMid:15833492

Van der Putten, E., Dehairs, F., Keppens, E., & Baeyens, W. (2000). High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis, environmental and biological controls. Geochimica et Cosmochimica Acta, 64, 997-1011. https://doi.org/10.1016/S0016-7037(99)00380-4

Veizer, J. (1983). Chemical diagenesis of carbonates, theory and application of trace element technique. Sedimentary Geology, 10, 3-100.

Wanamaker, A. D., Kreutz, K. J., Wilson, T., Borns, H. W., Introne, D. S., & Feindel, S. (2008). Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis, implications for paleotemperature reconstructions. Geo-Marine Letters, 28, 359-368. https://doi.org/10.1007/s00367-008-0112-8

Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295-309. https://doi.org/10.3354/meps243295

Wang, W. X., & Lu, G. (2017). Heavy metals in bivalve mollusks. In D. Schrenk & A. Cartus (Eds.), Chemical contaminants and residues in food (2nd ed., pp. 553-594). Woodhead Publishers. https://doi.org/10.1016/B978-0-08-100674-0.00021-7

Water Resources Commission. (2012). Pra River Basin-Integrated Water Resources Management Plan. Ministry of Sanitation & Water Resources of Ghana.

Weissberger, E. J., & Glibert, P. M. (2021). Diet of the eastern oyster, Crassostrea virginica, growing in a eutrophic tributary of Chesapeake Bay, Maryland, USA. Aquaculture Reports, 20, 100655. https://doi.org/10.1016/j.aqrep.2021.100655

Woelke, C. E. (1967). Measurement of water quality with the Pacific oyster embryo bioassay. American Society for Testing and Materials, 416, 112-120. https://doi.org/10.1520/STP47254S

Wyndham, T., McCulloch, M., Fallon, S., & Alibert, C. (2004). High-resolution coral records of rare earth elements in coastal seawater, biogeochemical cycling and a new environmental proxy. Geochimica et Cosmochimica Acta, 68, 2067-2080. https://doi.org/10.1016/j.gca.2003.11.004

Yan, H., Liu, C., An, Z., & Zhou, W. (2020). Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells. Proceedings of the National Academy of Sciences, 117, 7038-7043. https://doi.org/10.1073/pnas.1916784117 PMid:32179672 PMCid:PMC7132106

Yap, C.K. & Cheng, H. (2009). Heavy metal concentrations in Nerita lineata, the potential as a biomonitor for heavy metal bioavailability and contamination in the tropical intertidal area. Marine Biodiversity Records, 2, e46. https://doi.org/10.1017/S1755267209000505

Yap, C.K., Cheng, W.H., Ismail, A., Ismail, A.R. & Tan, S.G. (2009). Biomonitoring of heavy metal (Cd, Cu, Pb, and Zn) concentrations in the west intertidal area of Peninsular Malaysia by using Nerita lineata. Toxicological and Environmental Chemistry, 91, 29-41. https://doi.org/10.1080/02772240801968706

Zachara, J.M., Kittrick, J.A. & Harsh, J.B. (1988). The mechanism of Zn²⁺ adsorption on calcite. Geochimica et Cosmochimica Acta, 52, 2281-2291. https://doi.org/10.1016/0016-7037(88)90130-5

Zachara, J.M., Cowan, C.E. & Resch, C.T. (1991). Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta, 55, 1549-1562. https://doi.org/10.1016/0016-7037(91)90127-Q

Zhang, M., Sun, X. & Xu, J. (2020). Heavy metal pollution in the East China Sea: A review. Marine Pollution Bulletin, 159, 111473. https://doi.org/10.1016/j.marpolbul.2020.111473 PMid:32853847

Publicado

2024-10-02

Cómo citar

Reolid Pérez, M., Boateng, M., & Mahu, E. (2024). Fraccionamiento geoquímico de elementos traza en conchas de ostreidos y gasterópodos: Un indicador potencial de contaminación por metales pesados en ambientes costeros de Ghana. Estudios Geológicos, 80(1), 1085. https://doi.org/10.3989/egeol.45247.1085

Número

Sección

Artículos

Datos de los fondos

Royal Society
Números de la subvención FLR\R1\201385

Ministerio de Ciencia e Innovación
Números de la subvención PID2019-105537RB-100