Geochemical fractionation of trace elements in ostreid and gastropod shells: A potential proxy for heavy metal pollution in Ghana’s coastal environment
DOI:
https://doi.org/10.3989/egeol.45247.1085Keywords:
Crassostrea, trace metals, pollution, mangroveAbstract
The content of trace elements from Crassostrea tulipa (Ostreidae, Bivalvia) from four localities (Pra Estuary, Densu Estuary, Kpone Beach, and Anyanui Creek) along the coast of Ghana has been used as a bioindicator of environmental pollution. The lowest values of heavy metals correspond to the Crassostrea shells from Densu Estuary and Anyanui Creek, whereas the highest contents are recorded in the shells from Pra Estuary and Kpone Beach. Densu Estuary and Anyanui Creek are located in areas not affected by major industries, and only Densu is located in a densely urbanized setting. Crassostrea shells from Densu Estuary are only enriched in Ni. However, the Total Organic Carbon content of the sediments of the Densu Estuary indicates anthropogenic organic pollution not evidenced by the composition of Crassostrea shells. The Crassostrea shells from the Pra Estuary show enrichment in most of the analysed trace elements (Li, Be, V, Cu, Cr, Zn, Ga, Y, Sn, Pb, U, Th, ∑REE, and As) compared with other studied sites. This enrichment is related to heavy metals influx to the Pra River by the mining activities, extensive forest clearance, and loss of soil minerals. The Crassostrea shells from Kpone Beach present comparatively high content of some trace elements (Be, Ba, Cu, Zn, Nb, Pb, and REE). The metal pollutants are related to the input of the Heavy Industrial Area of Tema (located around 3.5 km west of Kpone Beach) and urban effluences from the Greater Accra Region. The high content of Ba, Cu, Zn, and Pb in Crassostrea is directly related to high phytoplankton productivity (mainly for diatoms) linked to the input of trace metals transferred into the marine food webs. In addition, some analyses of gastropod shells from Kpone Beach indicate that Cerithium and Nerita are more sensitive to accumulating Ni and As than Crassostrea. The values of trace metals from the Crassostrea shells of the Densu Estuary and Anyanui Creek are comparatively low. Considering the role of Crassostrea shells as bioindicators for heavy metals pollution, the less polluted localities are Anyanui Creek and Densu Estuary, whereas Pra Estuary and Kpone Beach are affected by anthropic activities such as mining, urban effluents, and industry.
Downloads
References
Adokoh, C. K., Obodai, E. A., Essumang, D. K., Serfor-Armah, Y., Nyarko, B. J. B., & Asabere-Ameyaw, A. (2011). Statistical evaluation of environmental contamination, distribution and source assessment of heavy metals (aluminum, arsenic, cadmium, and mercury) in some lagoons and an estuary along the coastal belt of Ghana. Archives of Environmental Contamination and Toxicology, 61, 389-400. https://doi.org/10.1007/s00244-011-9643-5 PMid:21308369
Afum, B. O., & Owusu, C. K. (2016). Heavy metal pollution in the Birim River of Ghana. International Journal of Environmental Monitoring and Analysis, 4, 65-74. https://doi.org/10.11648/j.ijema.20160403.11
Ajonina, G., Diamé, A., & Kairo, J. (2008). Current status and conservation of mangroves in Africa, An overview. World Rainforest Movement Bulletin, 133, 1-6.
Akita, L. G., Laudien, J., & Nyarko, E. (2020). Geochemical contamination in the Densu Estuary, Gulf of Guinea, Ghana. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10035-4
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals, Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305
Amonoo-Neizer, E. H., Nyamah, D., & Bakiamoh, S. B. (1996). Mercury and arsenic pollution in soil and biological samples around the mining town of Obuasi, Ghana. Water, Air, and Soil Pollution, 91, 363-373. https://doi.org/10.1007/BF00666270
Armah, F. A., Quansah, R., & Luginaah, I. (2014). A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. International Scholarly Research Notices, 252148. https://doi.org/10.1155/2014/252148 PMid:27351015 PMCid:PMC4897542
Awotwi, A., Anornu, G. K., Quaye-Ballard, J. A., & Annor, T. (2018). Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986-2025. Land Degradation and Development, 29, 3331-3343. https://doi.org/10.1002/ldr.3093
Azmy, K., Brand, U., Sylvester, P., Gleeson, S. A., Logan, A., & Bitner, M. A. (2011). Biogenic and abiogenic low-Mg calcite (bLMC and aLMC), Evaluation of seawater-REE composition, water masses and carbonate diagenesis. Chemical Geology, 280, 180-190. https://doi.org/10.1016/j.chemgeo.2010.11.007
Baeza-Carratalá, J. F., Reolid, M., Giannetti, A., Benavente, D., & Cuevas-González, J. (2021). Coupling of trace elements in brachiopod shells and biotic signals from the Lower Jurassic South-Iberian Palaeomargin (SE Spain), Implications for the environmental perturbation around the early Toarcian Mass Extinction Event. Estudios Geológicos, 77, e141.
Babut, M., Sekyi, R., Rambaud, A., Potin-Gautier, M., Tellier, S., Bannerman, W., & Beinhoff, C. (2003). Improving the environmental management of small-scale gold mining in Ghana, a case study of Dumasi. Journal of Cleaner Production, 11, 215-221. https://doi.org/10.1016/S0959-6526(02)00042-2
Benito, M. I., & Reolid, M. (2012). Belemnite taphonomy (Upper Jurassic, Western Tethys) part II, Fossil-diagenetic analysis including combined petrographic and geochemical techniques. Palaeogeography, Palaeoclimatology, Palaeoecology, 358-360, 89-108. https://doi.org/10.1016/j.palaeo.2012.06.035
Bertram, M. A., & Cowen, J. P. (1997). Morphological and compositional evidence for biotic precipitation of marine barite. Journal of Marine Research, 55, 577-593. https://doi.org/10.1357/0022240973224292
Boening, D. W. (1999). An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environmental Monitoring and Assessment, 55, 459-470. https://doi.org/10.1023/A:1005995217901
Botwe, B. O., Kelderman, P., Nyarko, E., & Lens, P. N. L. (2017a). Assessment of DDT, HCH and PAH contamination and associated ecotoxicological risks in surface sediments of coastal Tema Harbour (Ghana). Marine Pollution Bulletin, 115, 480-488. https://doi.org/10.1016/j.marpolbul.2016.11.054 PMid:27916245
Botwe, B. O., Schirone, A., Delbono, I., Barsanti, M., Delfanti, R., Kelderman, P., Nyarko, E., & Lens, P. N. L. (2017b). Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). Journal of Radiation Research and Applied Sciences, 10, 63-71. https://doi.org/10.1016/j.jrras.2016.12.002
Brand, U., Logan, A., Hiller, N., & Richardson, J. (2003). Geochemistry of modern brachiopods, applications and implications or oceanography and paleoceanography. Chemical Geology, 198, 305-334. https://doi.org/10.1016/S0009-2541(03)00032-9
Brannon, A. C., & Rao, K. R. (1979). Barium, strontium and calcium levels in the exoskeleton, hepatopancreas and abdominal muscle of the grass shrimp, Palaemonetes pugio, relation to molting and exposure to barite. Comparative Biochemistry and Physiology Part A, Physiology, 63, 261-274. https://doi.org/10.1016/0300-9629(79)90158-0
Cabrita, M. T., Brito, P., Caçador, I., & Duarte, B. (2020). Impacts of phytoplankton blooms on trace metal recycling and bioavailability during dredging events in the Sado estuary (Portugal). Marine Environmental Research, 153, 104837. https://doi.org/10.1016/j.marenvres.2019.104837 PMid:31740070
Calvert, S. E., & Pedersen, T. F. (1993). Geochemistry of recent oxic and anoxic marine sediments, implications for the geological record. Marine Geology, 113, 67-88. https://doi.org/10.1016/0025-3227(93)90150-T
Carell, B., Forberg, S., Grundelius, E., Henrikson, L., Johnels, A., Lindh, U., Mutvel, H., Olsson, M., Svardstrom, K., & Westermark, T. (1987). Can mussel shells reveal environmental history? Ambio, 16, 2-10.
Carriker, M. R., Swann, C. P., & Ewart, J. W. (1982). An exploratory study with the proton micro-probe of the ontogenetic distribution of 16 elements in the shell of living oysters (Crassostrea virginica). Marine Biology, 69, 235-246. https://doi.org/10.1007/BF00397489
Cheng, L., Fenter, P., Sturchio, N. C., Zhong, Z., & Bedzyk, M. J. (1999). X-ray standing wave study or arsenite incorporation at the calcite surface. Geochimica et Cosmochimica Acta, 63, 3153-3157. https://doi.org/10.1016/S0016-7037(99)00242-2
Chevrollier, L. A., Koski, M., Sondergaard, J., Trapp, S., Aheto, D. W., Darpaah, G., & Nielse, T. G. (2022). Bioaccumulation of metals in the planktonic food web in the Gulf of Guinea. Marine Pollution Bulletin, 179, 113662. https://doi.org/10.1016/j.marpolbul.2022.113662 PMid:35490487
Clark, J. V., Pérez-Huerta, A., Gillikin, D. P., Aldridge, A. E., Reolid, M., & Endo, K. (2016). Determination of paleoseasonality of fossil brachiopods using shell spiral deviations and chemical proxies. Palaeoworld, 25, 662-674. https://doi.org/10.1016/j.palwor.2016.05.010
Cognie, B., Laurent, B., & Rincé, Y. (2001). Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries and Coasts, 24, 126-134. https://doi.org/10.2307/1352819
Comans, R. N. J., & Middelburg, J. J. (1987). Sorption of trace metals on calcite, applicability of the surface precipitation model. Geochimica et Cosmochimica Acta, 51, 2587-2591. https://doi.org/10.1016/0016-7037(87)90309-7
Dar, M. A., Belal, A. A., & Madkour, A. G. (2018). The differential abilities of some molluscs to accumulate heavy metals within their shells in the Timsah and the Great Bitter lakes, Suez Canal, Egypt. Egyptian Journal of Aquatic Research, 44, 291-298. https://doi.org/10.1016/j.ejar.2018.11.008
De Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N. R., Goderis, S., Van Malderen, S. J. M., Snoeck, C., Goolaerts, S., Vanhaeckem, F., & Claeys, P. (2019). Shell chemistry of the Boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates, and life cycle of an extinct Cretaceous oyster. Biogeosciences, 17, 2897-2922. https://doi.org/10.5194/bg-17-2897-2020
Debrah, C. (1999). Speciation of heavy metals in waters and sediment from the Densu Basin [Unpublished MsC dissertation]. University of Ghana.
Dimock, R. V. (1967). An examination of physiological variation in the American oyster, Crassostrea virginica [Unpublished doctoral dissertation]. Florida State University.
Donkor, A. K., Bonbzongo, J. C. J., Nartey, V. K., & Adotey, D. K. (2005). Heavy metals in sediments of the gold mining impacted Pra River basin, Ghana, West Africa. Soil & Sediment Contamination, 14, 479-503. https://doi.org/10.1080/15320380500263675
Du, Y., Lian, F., & Zhu, L. (2011). Biosorption of divalent Pb, Cd, and Zn on aragonite and calcite mollusc shells. Environmental Pollution, 159, 1763-1768. https://doi.org/10.1016/j.envpol.2011.04.017 PMid:21550150
Duncan, A. E., de Vries, N., & Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, and Soil Pollution, 229, 1-10. https://doi.org/10.1007/s11270-018-3899-6 PMid:30147192 PMCid:PMC6096550
Dupont, C. L., Buck, K. N., Palenik, B., & Barbeau, K. (2010). Nickel utilization in phytoplankton assemblages from contrasting ocean regimes. Deep Sea Research I, 57, 533-566. https://doi.org/10.1016/j.dsr.2009.12.014
Edward, F. E., Yap, C. Y., Ismail, A., & Tan, S. G. (2009). Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves. Water, Air, and Soil Pollution, 196, 297-309. https://doi.org/10.1007/s11270-008-9777-x
Effah, E., Aheto, D. W., Acheampong, E., Tulashie, S. K., & Adotey, J. (2021). Human health risk assessment from heavy metals in three dominant fish species of the Ankobra river, Ghana. Toxicology Reports, 8, 1081-1086. https://doi.org/10.1016/j.toxrep.2021.05.010 PMid:34113547 PMCid:PMC8170148
El-Sorogy, A., & Youssef, M. (2015). Assessment of heavy metal contamination in intertidal gastropod and bivalve shells from central Arabian Gulf coastline, Saudi Arabia. Journal of African Earth Sciences, 111, 41-53. https://doi.org/10.1016/j.jafrearsci.2015.07.012
Fianko, J., Osae, S., Adomako, D., Adotey, D. K., & Serfor-Armah, Y. (2007). Assessment of heavy metal pollution of the Iture Estuary in the central region of Ghana. Environmental Monitoring and Assessment, 131, 467-473. https://doi.org/10.1007/s10661-006-9492-2 PMid:17171259
Findlater, G., Shelton, A., Rolin, T., & Andrews, J. (2014). Sodium and strontium in mollusc shells: Preservation, palaeosalinity, and palaeotemperature of the Middle Pleistocene of eastern England. Proceedings of the Geologists' Association, 125, 14-19. https://doi.org/10.1016/j.pgeola.2013.10.005
Galimany, E., Lunt, J., Freeman, C. J., Reed, S., Segura-García, I., & Paul, V. J. (2017). Feeding behavior of eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria in shallow estuaries. Marine Ecology Progress Series, 567, 125-137. https://doi.org/10.3354/meps12050
Gbogbo, F., & Otoo, S. D. (2015). The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: Public health and phytoremediation implications. Environmental Monitoring and Assessment, 187, 655. https://doi.org/10.1007/s10661-015-4880-0 PMid:26423633
Gerdes, D. (1983). The Pacific oyster Crassostrea gigas: Part I. Feeding behaviour of larvae and adults. Aquaculture, 31, 195-219. https://doi.org/10.1016/0044-8486(83)90313-7
Gildeeva, O., Akita, L. G., Biehler, J., Frenzel, P., & Alivernini, M. (2021). Recent brackish water foraminifera and ostracoda from two estuaries in Ghana, and their potential as (palaeo) environmental indicators. Estuarine, Coastal and Shelf Science, 256, 107270. https://doi.org/10.1016/j.ecss.2021.107270
Gillikin, D. P., Dehairs, F., Lorrain, A., Steenmans, D., Baeyens, W., & André, L. (2006). Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleochemistry reconstruction. Geochimica et Cosmochimica Acta, 70, 395-407. https://doi.org/10.1016/j.gca.2005.09.015
González-Dávila, M. (1995). The role of phytoplankton cells on the control of heavy metal concentration in seawater. Marine Chemistry, 48, 215-236. https://doi.org/10.1016/0304-4203(94)00045-F
González-Muñoz, M. T., Martínez-Ruiz, F., Morcillo, F., Martín-Ramos, J. D., & Paytan, A. (2012). Precipitation of barite by marine bacteria: A possible mechanism for marine barite formation. Geology, 40, 675-678. https://doi.org/10.1130/G33006.1
Goodwin, D. H., Gillikin, D. P., & Roopnarine, P. D. (2013). Preliminary evaluation of potential stable isotope and trace element productivity proxies in the oyster Crassostrea gigas. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 88-97. https://doi.org/10.1016/j.palaeo.2012.03.034
Gupta, S. K., & Singh, J. (2011). Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: A review. IIOAB Journal, 2, 49-57.
Hagan, G. B., Ofosu, F. G., Hayford, E. K., Osae, E. K., & Oduro-Afriyie, K. (2011). Heavy metal contamination and physico-chemical assessment of the Densu River Basin in Ghana. Research Journal of Environmental and Earth Sciences, 3, 385-392.
Haris, H., Aris, A. Z., Mokhtar, M. B., & Looi, L. J. (2020). The accumulation of metals and methylmercury in Nerita lineata and the relation to intertidal surface sediment concentrations. Chemosphere, 245, 125590. https://doi.org/10.1016/j.chemosphere.2019.125590 PMid:31874324
His, E., & Maurer, D. (1988). Shell growth and gross biochemical composition of oyster larvae (Crassostrea gigas) in the field. Aquaculture, 69, 185-194. https://doi.org/10.1016/0044-8486(88)90195-0
Huanxin, W., Lejun, Z., & Presley, B. J. (2000). Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell. Environmental Geology, 39, 1216-1226. https://doi.org/10.1007/s002540000110
Jeandel, C., Tachikawa, K., Bory, A., & Dehairs, F. (2000). Biogenic barium in suspended and trapped material as a tracer of export production in the tropical NE Atlantic (EUMELI sites). Marine Chemistry, 71, 125-142. https://doi.org/10.1016/S0304-4203(00)00045-1
Joiris, C. R., Holsbeek, L., & Otchere, F. A. (2000). Mercury in the bivalves Crassostrea tulipa and Perna perna from Ghana. Marine Pollution Bulletin, 40, 457-460. https://doi.org/10.1016/S0025-326X(00)00014-X
Keul, N., Langer, G., De Nooijer, L. J., Nehrke, G., Reichart, G. J., & Bijma, J. (2013). Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochemistry, Geophysics, Geosystems, 14, 102-111. https://doi.org/10.1029/2012GC004330
Lazareth, C. E., Van der Putten, E., André, L., & Dehairs, F. (2003). High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: A record of environmental spatio-temporal variations? Estuarine, Coastal and Shelf Science, 57, 1103-1114. https://doi.org/10.1016/S0272-7714(03)00013-1
McManus, J., Berelson, W. M., Hammond, D. E., & Klinkhammer, G. P. (1999). Barium cycling in the North Pacific: Implication for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography, 14, 62-73. https://doi.org/10.1029/1998PA900007
Mahu, E., Nyarko, E., Hulme, S., & Coale, K. H. (2015). Distribution and enrichment of trace metals in marine sediments from the Eastern Equatorial Atlantic, off the Coast of Ghana in the Gulf of Guinea. Marine Pollution Bulletin, 98, 301-307. https://doi.org/10.1016/j.marpolbul.2015.06.044 PMid:26139460
Mahu, E., Nyarko, E., Hulme, S., Swarzenski, P., Asiedu, D. K., & Coale, K. H. (2016). Geochronology and historical deposition of trace metals in three tropical estuaries in the Gulf of Guinea. Estuarine, Coastal and Shelf Science, 177, 31-40. https://doi.org/10.1016/j.ecss.2016.05.007
Mahu, E., Sanko, S., Kamara, A., Chuku, E. O., Effah, E., Sohou, Z., Zounon, Y., Akinjogunla, V., Akinningbagbe, R. O., Diadhiou, H. D., & Marchant, R. (2022). Climate resilience and adaptation in West African Oyster Fisheries, An expert-based assessment of the vulnerability of the oyster Crassostrea tulipa to climate change. Fishes, 7, 205. https://doi.org/10.3390/fishes7040205
Marchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T., & Montagna, P. (2018). A simple biomineralization model to explain Li, Mg and Sr incorporation into aragonitic foraminifera and corals. Earth and Planetary Science Letters, 481, 20-29. https://doi.org/10.1016/j.epsl.2017.10.022
Markulin, K., Peharda, M., Mertz-Kraus, R., Schone, B. R., Uvanovic, H., Kovac, Z., & Janekovic, I. (2019). Trace and minor element record in aragonitic bivalve shells as environmental proxies. Chemical Geology, 507, 120-133. https://doi.org/10.1016/j.chemgeo.2019.01.008
Mil-Homens, M., Branco, V., Vale, C., Boer, W., Alt-Epping, U., Abrantes, F., & Vicente, M. (2009). Sedimentary record of anthropogenic metal inputs in the Tagus prodelta (Portugal). Continental Shelf Research, 29, 381-392. https://doi.org/10.1016/j.csr.2008.10.002
Montagna, P., McCulloch, M., Taviani, M., Remia, A., & Rouse, G. (2005). High-resolution trace and minor element compositions in deep-water scleractinian corals (Desmophyllum dianthus) from the Mediterranean Sea and the Great Australian Bight. In A. Freiwald & J. M. Roberts (Eds.), Cold-water Corals and Ecosystems (pp. 1109-1126). Springer. https://doi.org/10.1007/3-540-27673-4_56
Moore, R. W., Webb, R., Tokarczyk, R., & Wever, R. (1996). Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures. Journal of Geophysical Research, 101, 20899-20908. https://doi.org/10.1029/96JC01248
Morse, J. W., & MacKenzie, F. T. (1990). Geochemistry of sedimentary carbonates. Developments in Sedimentology 48. Elsevier.
Morse, J. W., Arvidson, R. A., & Lüttge, A. (2007). Calcium carbonate formation and dissolution. Chemical Reviews, 197, 342-381. https://doi.org/10.1021/cr050358j PMid:17261071
Nalewajko, G., Lee, K., & Jack, T. R. (1995). Effects of vanadium on freshwater phytoplankton photosynthesis. Water, Air, and Soil Pollution, 81, 93-105. https://doi.org/10.1007/BF00477258
Nicolaidou, A., & Nott, J. A. (1999). The role of the marine gastropod Cerithium vulgatum in the biogeochemical cycling of metals. In J. S. Gray, W. Ambrose, & A. Szaniawska (Eds.), Biogeochemical Cycling and Sediment Ecology (pp. 137-146). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-4649-4_7
Nordberg, G. F., Sandstrom, B., Becking, G., & Goyer, R. A. (2002). Essentiality and toxicity of metals. In B. Sarkar (Ed.), Heavy metals in the environment (pp. 1-34). Marcel Dekker. https://doi.org/10.1201/9780203909300.ch1
Nyarko, E., Boateng, C. M., Asamoah, O., Edusei, M. O., & Mahu, E. (2023). Potential Human Health Risks Associated with Ingestion of Heavy Metals through Fish Consumption in the Gulf of Guinea. Toxicology Reports, 10, 117-123. https://doi.org/10.1016/j.toxrep.2023.01.005 PMid:36698915 PMCid:PMC9869475
Nyarko, E., Fletcher, A., Addo, S., Foli, B., Foli, K., & Mahu, E. (2014). Geochemical assessment of heavy metals in surface sediments, a case study of the Tema Port, Ghana. Journal of Shipping and Ocean Engineering, 4, 79-92.
Obodai, E., Boamponsem, L. K., Odokoh, C. K., Essumang, D. K., Villawoe, E. A., Aheto, D. W., & Debrah, J. S. (2011). Concentrations of heavy metals in two Ghanaian Lagoons. Advances in Applied Science Research, 3, 177-187.
Otchere, F. A. (2003). Heavy metals concentrations and burden in the bivalves (Anadara (Senilia) senilis, Crassostrea tulipa and Perna perna) from lagoons in Ghana, Model to describe mechanism of accumulation/excretion. African Journal of Biotechnology, 2, 280-287. https://doi.org/10.5897/AJB2003.000-1057
Otchere, F. A., Joiris, C. R., & Holsbeek, L. (2003). Mercury in the bivalves Anadara (Senilia) senilis, Perna perna and Crassostrea tulipa from Ghana. Science of the Total Environment, 304, 369-375. https://doi.org/10.1016/S0048-9697(02)00582-X PMid:12663197
Pérez-Huerta, A., Etayo-Cadavid, M. F., Andrus, C. F. T., Jeffries, T. E., Watkins, C., Street, S. C., & Sandweiss, D. H. (2013). El Niño Impact on mollusk biomineralization, Implications for trace element proxy reconstructions and the paleo-archeological record. Plos One, 8, e54274. https://doi.org/10.1371/journal.pone.0054274 PMid:23405078 PMCid:PMC3566134
Paquette, J., & Reeder, R. J. (1995). Relationships between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta, 59, 735-749. https://doi.org/10.1016/0016-7037(95)00004-J
Prakash Babu, C., Brumsack, H. J., Schnetger, B., & Böttcher, M. E. (2002). Barium as a productivity proxy in continental margin sediments, a study from the eastern Arabian Sea. Marine Geology, 184, 189-206. https://doi.org/10.1016/S0025-3227(01)00286-9
Raddatz, J., & Rüggeberg, A. (2019). Constraining past environmental changes of cold-water coral mounds with geochemical proxies in corals and foraminifera. The Depositional Record, 7, 200-222. https://doi.org/10.1002/dep2.98
Raddatz, J., Ruggeberg, A., Flogel, S., Hathorne, E. C., Liebetrau, V., Eisenhauer, A., & Dullo, W. C. (2014). The influence of seawater pH on U/Ca ratios in the scleractinian cold-water coral Lophelia pertusa. Biogeosciences, 11, 1863-1871. https://doi.org/10.5194/bg-11-1863-2014
Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates, Why and so what? Environment Pollution, 120, 497-507. https://doi.org/10.1016/S0269-7491(02)00238-5 PMid:12442773
Rebelo, M., Amaral, M. C. R., & Pfeiffer, W. C. (2005). Oyster condition index in Crassostrea rhizophorae (Guilding, 1828) from a heavy-metal polluted coastal lagoon. Brazilian Journal of Biology, 65, 345-351. https://doi.org/10.1590/S1519-69842005000200019 PMid:16097738
Reeder, R. J., Lamble, G. M., & Northrup, P. A. (1999). XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. American Mineralogist, 84, 1049-1060. https://doi.org/10.2138/am-1999-7-807
Reolid, M., Reolid, J., Betzler, C., & Lindhorst, S. (2023). Chemical fractionation from benthic faunas in Saya de Malha Bank (Mascarene Plateau, western Indian Ocean), vital and habitat effects. Continental Shelf Research, 266, 105078. https://doi.org/10.1016/j.csr.2023.105078
Richardson, C. (2001). Molluscs as archives of environmental change. Oceanography and Marine Biology, 39, 103-164.
Roda, M. S., Griesshaber, E., Angiolini, L., Rollion-Bard, C., Harper, E. M., Bitner, M. A., Milner García, S., Ye, F., Henkel, D., Häussermann, V., Eisenhauer, A., Gnägi, H., Brand, U., Logan, A., & Schmahl, W. W. (2021). The architecture of recent brachiopod shells, diversity of biocrystal and biopolymer assemblages in rhynchonellie, terebratulide, thecideide and craniide shells. Marine Biology, 169, 4. https://doi.org/10.1007/s00227-021-03962-4
Rosales, I., Quesada, S., & Robles, S. (2004). Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 253-275. https://doi.org/10.1016/S0031-0182(03)00686-2
Russell, A. D., Emerson, S., Nelson, B., Erez, J., & Lea, D. W. (1994). Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochimica et Cosmochimica Acta, 58, 671-681. https://doi.org/10.1016/0016-7037(94)90497-9
Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E., & Algeo, T. J. (2015). Total organic carbon, organic phosphorous, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Science Reviews, 149, 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017
Schone, B. R., Zhang, Z. J., Redermaacher, P., Thébault, J., Jacob, D. E., Nunn, E. V., & Maurer, A. F. (2011). Sr/Ca and Mg/Ca ratios of ontogenetically old, long lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 52-64. https://doi.org/10.1016/j.palaeo.2010.03.016
Seth, B., & John, B. (2016). Physico-chemical characterization of River Pra in the western region, Ghana. International Journal of Scientific & Engineering Research, 7, 1396-1404.
Sidoumou, Z., Gnassia-Barelli, M., Siau, Y., Morton, V., & Roméo, M. (2006). Heavy metal concentrations in molluscs from the Senegal coast. Environment International, 32, 384-387. https://doi.org/10.1016/j.envint.2005.09.001 PMid:16243398
Smrzka, D., Zwicker, J., Bach, W., Feng, D., Himmler, T., Chen, D., & Peckmann, J. (2019). The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals, a review. Facies, 65, 41. https://doi.org/10.1007/s10347-019-0581-4
Stecher, H. A., Krantz, D. E., Lord, C. J., Luther, G. W., & Bock, K. W. (1996). Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochimica et Cosmochimica Acta, 60, 3445-3456. https://doi.org/10.1016/0016-7037(96)00179-2
Stipp, S. L., & Hochella, M. F. J. (1991). Structure and bonding environments at the calcite surface observed with X-ray photoelectron spectroscopy (XPS) and low energy diffraction (LEED). Geochimica et Cosmochimica Acta, 55, 1723-1736. https://doi.org/10.1016/0016-7037(91)90142-R
Szymanska-Walkiewicz, M., Glinska-Lewczuk, K., Burandt, P., & Obolewski, K. (2022). Phytoplankton sensitivity to heavy metals in Baltic Coastal Lakes. International Journal of Environment Research and Public Health, 19, 4131. https://doi.org/10.3390/ijerph19074131 PMid:35409822 PMCid:PMC8998715
Tarique, Q., Burger, J., & Reinfelder, J. R. (2019). Size scaling of contaminant trace metal accumulation in the infaunal marine clam Amiantis umbonella. Archives of Environmental Contamination and Toxicology, 77, 368-376. https://doi.org/10.1007/s00244-019-00659-0 PMid:31359071
Tay, C. K., Asmah, R., & Biney, C. A. (2009). Trace metal levels in water and sediment from the Sakumo II and Muni lagoons, Ghana. West African Journal of Applied Ecology, 16, 75-94. https://doi.org/10.4314/wajae.v16i1.55870
Thébault, J., Chauvaud, L., Helguen, L., Clavier, J., & Pe, C. (2009). Barium and molybdenum records in bivalve shells, geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography, 54, 1002-1014. https://doi.org/10.4319/lo.2009.54.3.1002
Thébault, J., Jolivet, A., Waeles, M., Tabouret, H., Sabarot, S., Pécheuran, C., Leynaert, A., Jochum, K. P., Schöne, B. R., Fröhlich, L., Sibert, V., Amice, E., & Chauvaud, L. (2022). Scallop shells as geochemical archives of phytoplankton-related ecological processes in a temperate coastal ecosystem. Limnology and Oceanography, 67, 187-202. https://doi.org/10.1002/lno.11985
Tribovillard, N., Algeo, T., Lyons, T., & Riboulleau, A. (2006). Trace metals as palaeoredox and palaeoproductivity proxies, an update. Chemical Geology, 232, 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
Ullmann, C. V., Szucs, D., Jiang, M., Hudson, A. J. L., & Hesselbo, S. P. (2022). Geochemistry of macrofossil, bulk rock and secondary calcite in the Early Jurassic strata of the Llanbedr (Mochras Farm) drill core, Cardigan Bay Basin, Wales, UK. Journal of the Geological Society, 179, jgs2021-018. https://doi.org/10.1144/jgs2021-018
Usero, J., Morillo, J., & Gracia, I. (2005). Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere, 59, 1175-1181. https://doi.org/10.1016/j.chemosphere.2004.11.089 PMid:15833492
Van der Putten, E., Dehairs, F., Keppens, E., & Baeyens, W. (2000). High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis, environmental and biological controls. Geochimica et Cosmochimica Acta, 64, 997-1011. https://doi.org/10.1016/S0016-7037(99)00380-4
Veizer, J. (1983). Chemical diagenesis of carbonates, theory and application of trace element technique. Sedimentary Geology, 10, 3-100.
Wanamaker, A. D., Kreutz, K. J., Wilson, T., Borns, H. W., Introne, D. S., & Feindel, S. (2008). Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis, implications for paleotemperature reconstructions. Geo-Marine Letters, 28, 359-368. https://doi.org/10.1007/s00367-008-0112-8
Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295-309. https://doi.org/10.3354/meps243295
Wang, W. X., & Lu, G. (2017). Heavy metals in bivalve mollusks. In D. Schrenk & A. Cartus (Eds.), Chemical contaminants and residues in food (2nd ed., pp. 553-594). Woodhead Publishers. https://doi.org/10.1016/B978-0-08-100674-0.00021-7
Water Resources Commission. (2012). Pra River Basin-Integrated Water Resources Management Plan. Ministry of Sanitation & Water Resources of Ghana.
Weissberger, E. J., & Glibert, P. M. (2021). Diet of the eastern oyster, Crassostrea virginica, growing in a eutrophic tributary of Chesapeake Bay, Maryland, USA. Aquaculture Reports, 20, 100655. https://doi.org/10.1016/j.aqrep.2021.100655
Woelke, C. E. (1967). Measurement of water quality with the Pacific oyster embryo bioassay. American Society for Testing and Materials, 416, 112-120. https://doi.org/10.1520/STP47254S
Wyndham, T., McCulloch, M., Fallon, S., & Alibert, C. (2004). High-resolution coral records of rare earth elements in coastal seawater, biogeochemical cycling and a new environmental proxy. Geochimica et Cosmochimica Acta, 68, 2067-2080. https://doi.org/10.1016/j.gca.2003.11.004
Yan, H., Liu, C., An, Z., & Zhou, W. (2020). Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells. Proceedings of the National Academy of Sciences, 117, 7038-7043. https://doi.org/10.1073/pnas.1916784117 PMid:32179672 PMCid:PMC7132106
Yap, C.K. & Cheng, H. (2009). Heavy metal concentrations in Nerita lineata, the potential as a biomonitor for heavy metal bioavailability and contamination in the tropical intertidal area. Marine Biodiversity Records, 2, e46. https://doi.org/10.1017/S1755267209000505
Yap, C.K., Cheng, W.H., Ismail, A., Ismail, A.R. & Tan, S.G. (2009). Biomonitoring of heavy metal (Cd, Cu, Pb, and Zn) concentrations in the west intertidal area of Peninsular Malaysia by using Nerita lineata. Toxicological and Environmental Chemistry, 91, 29-41. https://doi.org/10.1080/02772240801968706
Zachara, J.M., Kittrick, J.A. & Harsh, J.B. (1988). The mechanism of Zn²⁺ adsorption on calcite. Geochimica et Cosmochimica Acta, 52, 2281-2291. https://doi.org/10.1016/0016-7037(88)90130-5
Zachara, J.M., Cowan, C.E. & Resch, C.T. (1991). Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta, 55, 1549-1562. https://doi.org/10.1016/0016-7037(91)90127-Q
Zhang, M., Sun, X. & Xu, J. (2020). Heavy metal pollution in the East China Sea: A review. Marine Pollution Bulletin, 159, 111473. https://doi.org/10.1016/j.marpolbul.2020.111473 PMid:32853847
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Royal Society
Grant numbers FLR\R1\201385
Ministerio de Ciencia e Innovación
Grant numbers PID2019-105537RB-100