The Vein-type Zn-(Pb, Cu, As, Hg) mineralization at Fedj Hassène orefield, North-Western Tunisia: Mineralogy, Trace Elements, Sulfur Isotopes and Fluid Inclusions

Authors

  • J. Bejaoui Centre National des Sciences et Technologies Nucléaires, Sidi Thabet; U.R. de Minéralogie et Géochimie Appliquées, Département de Géologie, Faculté des Sciences de Tunis, Université de Tunis
  • S. Bouhlel U.R. de Minéralogie et Géochimie Appliquées, Département de Géologie, Faculté des Sciences de Tunis, Université de Tunis
  • D. Barca Department of Earth Sciences -University of Calabria, Arcavacata, Rende
  • A. Braham Direction Inventaire et Exploration Minérale, Office National des Mines, Tunis

DOI:

https://doi.org/10.3989/egeol.40214.118

Keywords:

Vein-type Zn-Pb ore deposit, mineralogy, trace elements, sulfur isotope, fluid inclusions, Fedj Hassène, Tunisia

Abstract


The Fedj Hassène district is localized at the edge of the Tuniso-Algerian border 10 km of Ghardimaou area. It consists of a Zn-Pb vein type with minor amounts of Cu-As-Hg. The total Zn reserves are about 370.000t. The mineralization occurs within subparallel fractures to the Ain El Kohla ESE-WNW fault. Host rocks consist of limestones and marly limestones of the Middle Turonian. In the principal lode of Fedj Hassène, the mineralization occurs as vein filling of massive and brecciated brown sphalerite and minor galena ore with gangue. Other trace minerals are pyrite, chalcopyrite, orpiment, realgar, smithsonite and cerussite. LA-ICP-MS analyses in sphalerites show mean contents of 0,84 wt% Fe, 0,14 wt% Cd and 0,02 wt% Mn Ore. Fluid inclusions study in calcite and sphalerite reveals one mineralizing fluid characterized by an average salinity 23% wt NaCl with decreasing homogenisation temperature. In fact the temperature shows decrease from sphalerite to calcite. The fluid density that corresponds to trapping pressure ranges between 1.00 g/cm3 and 1.11 g/cm3 and pressure close to 200 bars. Microthermometric data in fluid inclusion hosted by gangue mineral presented by calcite show an average temperature of formation around 194°C. These inclusions homogenized to the liquid phase between 156°C and 210°C and salinities values ranging from 22 to 28 wt% NaCl and an average around 23% wt NaCl. The δ34S (VCDT) values of sphalerite are in the range of + 4,6‰ to 6,4‰ (average=5,6‰). Thermochemical reduction of Triassic sulfate by reaction with hydro-carbons is the most probable source for the heavy and the narrow range of the ?34S values. Mineralogical, geochemical of trace elements, fluid inclusions and sulfur isotopes studies allow to include the vein-type ore field of Fedj Hassène in the polymetallic (Pb-Zn-As-Hg) vein mineralization of the nappe zone in northern Tunisia and north eastern Algeria.

Downloads

Download data is not yet available.

References

Axelsson M.D. & Rodushkin I. (2001). Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS. J. Geochemical. Exploration. 72: 81-89. doi:10.1016/S0375-6742(00)00166-7

Bouhlel S. (1993). Gîtologie, minéralogie et essai de modélisation des minéralisations à F-Ba-Sr-Pb-Zn-(S) associées aux carbonates (jurassiques et crétacés) et diapirs triasiques, gisements de Stah-Kohol, Zriba- Guebli, Bou Jabeur et Fedj Lahdoum (Tunisie septentrionale) Thèse doct. D’état es-Sciences, Univ. Tunis II, 293 pp.

Bouhlel, S. (2005). Carbonate hosted Mississippi Valleytype Pb-Zn deposits in Tunisia (Eastern-foreland belt).In: Mineral Deposit Research: Meeting the Global Challenge. Proceedings of the Eighth Biennial SGA Meeting, Beijing, China, 18-21 August, 2005, (Zhao, C. & Guo, B., eds.), 3: 19-22.

Bouhlel, S. (2007). Les ressources en plomb, zinc, fer, argent, cuivre, or, barytine, fluorine et célestite de la Tunisie: un bilan de 117 ans de recherches, d’explorations et d’exploitations. XVII èmes Journées Nationales de la SSNT Hammamet. Conférence plénière: 1-2

Bouhlel, S.; Leach, D.L.; Craig, A.J. & Lehman, B. (2009). Ore Textures and Isotope Signatures of the Peridiapiric Carbonate-Hosted Pb-Zn deposit of Bougrine, Tunisia. Proceedings of the Tenth Biennial Meeting of the Society for Geology Applied to Mineral Deposits, 1: 409-411.

Bodnar R J. (1993). Revised equation and table for determining the freezing point depression of H2ONaCl solutions. Geochimica et Cosmochimica Acta, 57: 683-684. doi:10.1016/0016-7037(93)90378-A

Braham A, M. Hammami, A. Kadri, N. Hatira, M. Chikhaoui & N. Ben Ayed. (1999). Le rôle de la tectonique cassante dans la répartition des concentrations métallifères de la mine de Fedj Hassène (Tunisie septentrionale). Notes du Service Géologique, 66: 90-103.

Brown, P.E. (1989). FLINCOR, a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74: 1390–1393.

Charef, A. & Sheppard, M.F. (1987). Pb-Zn mineralization associated with diapirism: fluid inclusion and stable isotope (H, C, O) evidence for the origin and evolution of the fluids at Fedj-El-Adoum, Tunisia. Chemical Geology, 61: 113-134. doi:10.1016/0009-2541(87)90032-5

Crawford M.L. (1981). Phase equilibria in aqueous fluid inclusions. Short course in fluid inclusions: Applications to petrology. In: Mineralogical Association of Canada course Handbook 6 (Hollister, L.S. & Crawford, L., eds.), 75-100.

Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Danyushevsky, L., Shimizu, M., Saini-Eidukat, B. & Melcher, F. (2009). Trace and minor elements in sphalerite: a LAICP-MS study. Geochimica and Cosmochimica Acta 73: 4761-4791. doi:10.1016/j.gca.2009.05.045

Di Benedetto, F.; Bernardini, G.P.; Costagliola, P.; Plant, D. & Vaughan, D.J. (2005). Compositional zoning in sphalerite crystals. American Mineralogist, 90: 1384-1392. doi:10.2138/am.2005.1754

Dubois, M. & Marignac, C. (1997). The H2O-NaCl-MgCl2 ternary phase diagram with special application to fluid inclusions studies. Economic Geology, 92: 114-119. doi:10.2113/gsecongeo.92.1.114

Fryer, B.J.; Jackson, S.E. & Longerich, H.P. (1995). The design, operation, and role of the laser-ablation microprobe coupled with an inductively coupled plasmamass spectrometer (LAM-ICP-MS) in the Earth Sciences. Canadian Mineralogist, 33: 303-312.

Giesemann, A.; Jäger, H.-J.; Norman, A.L.; Krouse, H.R. & Brand, W.A. (1994). On-line sulfur-isotope determination using an Elemental Analyzer coupled to a Mass Spectrometer. Analytical Chemistry, 66: 2816-2819. doi:10.1021/ac00090a005

Günther D. & Mermet J-M. (2000). Laser ablation for ICP MS. In: Discrete Sample Introduction Techniques for Inductively Coupled Plasma Mass Spectrometry (Beauchemin D.; Grégoire, C.D.; Günther, D.;, Karanassios, V. Mermet, J.-M. & Wood, T.J., eds). Elsevier, Amsterdam, 445-501.

Loukil, C. (1990). Fej Hcine sud. Prospection géochimique tactique. Rapport ONM n7 geo 59/90.

Marignac, C. (1983). The polymetallic ore veins of Ain Barbar (Algeria) as a consequence of alpine geothermal activity. In: Mineral deposits of the Alps and of the alpine epoch in Europe (Schneider, H.J., ed.), Springer-Verlag, Heidelberg, 457–467.

Marignac, C. (1985). Les minéralisations filoniennes d’Ain Barbar (Algérie). Un exemple d’hydrothermalisme lié à l’activité géothermique alpine en Afrique du nord. Thèse Doctorat d’Etat, I.N.P. Lorraine, Nancy, France.

Marignac, C. & Zimmermann J.L. (1983). Ages K–Ar de l’événement hydrothermal et des intrusions associées dans le district minéralisé Miocène d’Ain-Barbar (Est Constantinois, Algérie), Mineralium Deposita, 18: 457–467. doi:10.1007/BF00204490

Oakes C.S., Bodnar R.W. & Simonson J.M. (1990). The system NaCl-CaCl2-H2O. I. The ice liquidus at 1 atm total pressure. Geochimica and Cosmochimica Acta, 54: 603-610. doi:10.1016/0016-7037(90)90356-P

Orgeval, J.J. (1994). Peridiapiric metal concentration: example of the Bougrine deposit (Tunisian Atlas). In: Sediment-hosted Zn–Pb ores (Fontboté, L. & Boni, M., eds.), Society for Geology Applied to Mineral Deposits, Special Publication 10, Springer-Verlag, Heidelberg, 354-389.

Osadchii, E.G.; Gorbatiy, Y.E. & Rappo, O.A. (2004). Lattice parameters and Raman spectroscopy of sphalérite solid solution (FexZn1–x) S at the standard T, p conditions. Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry - 2004, 1: 1-2.

Roedder, E. (1962). Studies of fluids inclusions, I- low temperature application of a dual- purpose freezing and heating stage. Economic Geology, 57: 1045-1061. doi:10.2113/gsecongeo.57.7.1045

Rouvier, H.; Perthuisot, V. & Mansouri, A. (1985). Deposits and salt bearing diapirs in southern Europe and North Africa. Economic Geology, 80: 666-687. doi:10.2113/gsecongeo.80.3.666

Sainfeld, P. (1952). Les gîtes Plombo-Zincifères de Tunisie. Annales des Mines et Géologie de Tunis, 285pp.

Shepherd, T.J.; Rankin, A.H. & Alderton, D.H.M. (1985). A practical guide of fluid inclusions studies. Blackie, Glasgow and London, 239 pp.

Slim-Shimi. N, (1992). Minéralogie et paragenèses des gîtes polymétalliques de la zone des nappes de la Tunisie. Conditions géochimiques de dépôt et implication génétiques. PhD Thesis, Université de Tunis I, 292 pp.

Zhang & Frantz J.D. (1987). Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology, 64: 335-350. doi:10.1016/0009-2541(87)90012-X

Downloads

Published

2011-06-30

How to Cite

Bejaoui, J., Bouhlel, S., Barca, D., & Braham, A. (2011). The Vein-type Zn-(Pb, Cu, As, Hg) mineralization at Fedj Hassène orefield, North-Western Tunisia: Mineralogy, Trace Elements, Sulfur Isotopes and Fluid Inclusions. Estudios Geológicos, 67(1), 5–20. https://doi.org/10.3989/egeol.40214.118

Issue

Section

Articles