The Pedregal granite (Portugal): petrographic and geochemical characterization of a peculiar granitoid

Authors

  • J. A. Ferreira Geology Centre/Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, Porto University
  • M. A. Ribeiro Geology Centre/Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, Porto University
  • H. C.B. Martins Geology Centre/Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, Porto University

DOI:

https://doi.org/10.3989/egeol.41730.321

Keywords:

Variscan granites, anatexis, geochemistry, rare earth elements

Abstract


The Pedregal granite outcrops in the Central Iberian Zone, northern Portugal, in the eastern border of a synorogenic variscan granite-migmatite complex sub-concordant with the regional metamorphic structures. It is a granitoid (ca. 3 km2) with an elongated NW-SE shape intruded in staurolite-micaschist and banded gneiss-migmatite rocks, with local igneous breccias in the contact. The country rocks belong to a metapelitic and metasammitic sequence of Edicarian-Cambrian age, known as the “Complexo Xisto-Grauváquico” (CXG) which shows a main regional foliation with a NW-SE to NNW-SSE direction. The Pedregal granite is peraluminous (its A/CNK parameter ranges from 1.18 to 1.62), with a magnesian and alkali to alkali-calcic signature. The peculiar features of the granite are high contents of Zr (389 to 435 ppm) and a LREE flat pattern, which are uncommon characteristics for granitic rocks, as well as the corroded shape of the biotite, and the large amount of secondary muscovite. These peculiar features distinguish it from the adjacent synorogenic granites. The field, petrographical and chemical features of the Pedregal granite are in accordance with a second phase of partial melting of a residuum, depleted by melt segregation during a first melting episode with the involvement of peritectic garnet and abundant residual biotite with LREE- and Zr-bearing accessory minerals. Besides, the intrusive character of the granite, and the presence of metasedimentary xenoliths point out to a secondary diatexite.

Downloads

Download data is not yet available.

References

Alcock, J.E.; Martínez Catalán, J.R.; Arenas, R. & Díez Montes, A. (2009). Use of thermal modeling to assess the tectono-metamorphic history of the Lugo and Sanabria gneiss domes, Northwest Iberia. Bulletin de la Société Géologique de France, 180: 179–197. http://dx.doi.org/10.2113/gssgfbull.180.3.179

Almeida, A. (2001). Geochemical and Geochronological Characterization of the Syntectonic Two-Mica Granite of Porto (NW Portugal). Abstracts volume. III Congreso Ibérico de Geoquímica and VIII Congreso de Geoquímica de España, Zaragoza, 311–315.

Areias, M.; Ribeiro, M.A. & Dória, A. (2012). Caracterização da faixa gnaissomigmatítica da zona costeira do NW de Portugal. Proceedings, 46° Congresso Brasileiro de Geologia/1° Congresso de Geologia dos Países de Língua Portuguesa. Santos, Brasil.

Bea, F. (1996). Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37 (3): 521–552. http://dx.doi.org/10.1093/petrology/37.3.521

Bento dos santos, T.; Ribeiro, M.L.; Clavijo, E.; Díez Montes, A. & Solá, A.R. (2010). Estimativas geotermobarométricas e percursos P-T de migmatitos dos Farilhões, arquipélago das Berlengas, Oeste de Portugal. e-Terra, 16, 11.

Carríngton da Costa, J. & Teixeira, C. (1957). Carta Geológica de Portugal, na escala 1/50.000, Notícia Explicativa da Folha 9-C, Porto. Serviços Geológicos de Portugal, 39 pp.

Díez Fernández, R.; Martínez Catalán, J.R.; Barreiro, J.G. & Arenas, R. (2012). Extensional Flow during Gravitational Collapse: A Tool for Setting Plate Convergence (Padrón Migmatitic Dome, Variscan Belt, NW Iberia). The Journal of Geology, 120: 83–103. http://dx.doi.org/10.1086/662735

Dong, M.; Dong, G.; Mo, X.; Santosh, M.; Zhu, D.; Yu, J.; Nie, F. & Hu, Z. (2013). Geochemistry, zircon U–Pb geochronology and Hf isotopes of granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic evolution along the Gondwana margin. Lithos, 179: 36–47. http://dx.doi.org/10.1016/j.lithos.2013.05.011

Evensen, N.M.; Hamilton, P.J. & O'Nions, R.K. (1978). Rare earth abundances in chondrite meteorites. Geochimica et Cosmochimica Acta, 42: 1199–1212. http://dx.doi.org/10.1016/0016-7037(78)90114-X

Ferreira, J.A. (2013). Caracterização do granito do Pedregal. Condicionantes da sua aplicação. Master Thesis, Universidade do Porto, 155 pp.

Ferreira, J.A.; Martins, H.C.B.; Ribeiro, M.A. & Ferreira, P. (2013). The Pedregal granitoid: a peculiar diatexitic rock (?) in a granite-migmatite complex. Mineralogical Magazine, 77(5): 1079.

Ferreira, J.A.; Martins, H.C.B. & Ribeiro, M.A. (2014). Geocronologia (U-Pb) e Geoquímica do granito do Pedregal. Comunicações Geológicas. 101: in press.

Holtz, F. & Barbey, P. (1991). Genesis of Peraluminous Granites II. Mineralogy and Chemistry of the Tourem Complex (North Portugal). Sequential Melting vs. Restite Unmixing. Journal of Petrology, 32 (5): 959–978. http://dx.doi.org/10.1093/petrology/32.5.959

Lancaster, P.J.; Baxter, E.F.; Ague, J.J.; Breeding, C.M. & Owens, T.L. (2008). Synchronous peak Barrovian metamorphism driven by syn-orogenic magmatism and fluid flow in southern Connecticut, USA. Journal of Metamorphic Geology, 26: 527–538. http://dx.doi.org/10.1111/j.1525-1314.2008.00773.x

Lux, D.R.; De Yoreo, J.J.; Guidotti, C.V. & Decker, E.R. (1986). Role of plutonism in low-pressure metamorphic belt formation. Nature, 323: 794–797. http://dx.doi.org/10.1038/323794a0

Martins, H.C.B.; Almeida, A.; Noronha, F. & Leterrier, J. (2001). Novos dados geocronológicos de granitos da região do Porto: granito do Porto e granito de Lavadores. Actas do VI Congresso de Geoquímica dos Países de Língua Portuguesa e XII Semana de Geoquímica, Universidade do Algarve, Faro, 146–148.

Mendes, F. (1967/1968). Contribuition à l'étude géochronologique, par le méthode au strontium, des formations cristallines du Portugal. Boletim do Museu e Laboratório Mineralógico e Geológico da Faculdade de Ciências da Universidade de Lisboa, 11: 1–155.

Milorde, E.; Sawyer, E.W. & Brown, M. (2001). Formation of a Diatexite Migmatite and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an Example from St. Malo, France. Journal of Petrology, 42 (3): 487–505. http://dx.doi.org/10.1093/petrology/42.3.487

Moita, P.; Santos, J.F. & Pereira, M.F. (2009). Layered granitoids: Interaction between continental crust recycling processes and mantle-derived magmatism Examples from the Évora Massif (Ossa–Morena Zone, southwest Iberia, Portugal). Lithos, 111: 125–141. http://dx.doi.org/10.1016/j.lithos.2009.02.009

Pereira, E.; Cabral, J.; Cramez, P.; Moreira, A.; Noronha, F.; Oliveira, J.M.; Farinha Ramos, J.M.; Reis, M.L.; Ribeiro, A.; Ribeiro, M.L. & Simões, M. (1992). Carta geológica de Portugal, Escala 1/200.000, Notícia Explicativa da Folha 1. Serviços Geológicos de Portugal, Lisboa, 83 pp.

Pinto, M.S. (1984). O granito gnáissico de Fânzeres (Porto, Portugal) – Idade e caracterização geoquímica geral. Memórias e Notícias, Universidade de Coimbra, 98: 231–242.

Pinto, M.S.; Casquet, C.; Ibarrola, E.; Corrétge, L.G. & Ferreira, M.P. (1987). Síntese geocronológica dos granitoides do Maciço Hespérico. In: Geologia de los granitoides y rocas associadas del Macizo Hespérico (Libro Homenaje a L.C.G. Figueirola) (Bea, F.; Carmina, A.; Gonzalo, J.C.; Plaza, M.L. & J.M.L. Rodrigues., Eds.). Editorial Rueda, Madrid, 69–86.

Ribeiro, M.A.; Sant'Ovaia, H. & Dória, A. (2011). Litologias gnaisso-migmatíticas da faixa Lavadores-Madalena: possível significado das paragéneses com hercinite. Simpósio Modelação de Sistemas Geológicos, Coimbra, 343–351.

Solar, G.S. & Brown, M. (2001). Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons?. Journal of Petrology, 42 (4): 789–823. http://dx.doi.org/10.1093/petrology/42.4.789

Sylvester, P.J. (1998). Post-collisional strongly peraluminous granites. Lithos, 45: 29–44. http://dx.doi.org/10.1016/S0024-4937(98)00024-3

Ugidos, J.M.; Sánchez-Santos, J.M.; Barba, P. & Valladares. M. I. (2010). Upper Neoproterozoic series in the Central Iberian, Cantabrian and West Asturian Leonese Zones (Spain): Geochemical data and statistical results as evidence for a shared homogenised source area. Precambrian Research, 178: 51–58. http://dx.doi.org/10.1016/j.precamres.2010.01.009

Valle Aguado, B.; Azevedo, M.R.; Santos, J.F. & Nolan, J. (2010). O Complexo Migmatítico de Mundão (Viseu, norte de Portugal). e-Terra, 16: 9.

Vanderhaeghe, O. (2009). Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477: 119–134. http://dx.doi.org/10.1016/j.tecto.2009.06.021

Viruete, J.E.; Indares, A. & Arenas, R. (2000). P-T Paths Derived from Garnet Growth Zoning in a Extensional Setting: an Example from the Tormes Gneiss Dome (Iberian Massif, Spain). Journal of Petrology, 41 (10): 1489–1515. http://dx.doi.org/10.1093/petrology/41.10.1489

Watson, E.B. & Harrison, T.M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295–304. http://dx.doi.org/10.1016/0012-821X(83)90211-X

Published

2014-12-30

How to Cite

Ferreira, J. A., Ribeiro, M. A., & Martins, H. C. (2014). The Pedregal granite (Portugal): petrographic and geochemical characterization of a peculiar granitoid. Estudios Geológicos, 70(2), e019. https://doi.org/10.3989/egeol.41730.321

Issue

Section

Articles