Procesos de precipitación mineral bioinducidos en sistemas kársticos subterráneos: breve revisión y nuevas tendencias

Autores/as

  • S. Sánchez-Moral Departamento de Geología, Museo Nacional de Ciencias Naturales
  • J. M. González Instituto de Recursos Naturales y Agrobiología, CSIC
  • J. C. Cañaveras Departamento de Ciencias de la Tierra y del Medio Ambiente, Facultad de Ciencias, Universidad de Alicante
  • S. Cuezva Departamento de Geología, Museo Nacional de Ciencias Naturales
  • J. Lario Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia
  • C. Cardell Departamento de Mineralogía y Petrología, Universidad de Granada
  • J. Elez Departamento de Paleontología, Universidad Complutense de Madrid
  • L. Luque Fundación Conjunto Paleontológico de Teruel, Dinópolis, Teruel.
  • C. Saiz-Jiménez Instituto de Recursos Naturales y Agrobiología, CSIC

DOI:

https://doi.org/10.3989/egeol.066215

Palabras clave:

comunidad microbiana, geomicrobiología, biorreceptividad, biomineralización, karst, cueva

Resumen


Los microorganismos, en particular las bacterias, habitan en todos los ambientes posibles de la biosfera incluidos los ambientes subterráneos. Desempeñan un papel importante en procesos geológicos tales como la precipitación y disolución mineral, e influyen notablemente sobre los ciclos biogeoquímicos de diferentes elementos. Hasta este momento, son relativamente pocos los estudios orientados a conocer el papel activo de los microorganismos, especialmente las bacterias, en la formación de espeleotemas, de manera que la implicación de la actividad microbiana en la precipitación y disolución mineral en ambientes kársticos es un tema aún sin resolver en geomicrobiología. Actualmente, no está del todo aclarada cuál es la interrelación entre los microorganismos y las fábricas minerales, ni el papel que juegan los microorganismos en la precipitación de carbonatos.
Las cuevas son ambientes protegidos donde las fábricas microbianas pueden preservarse sin sufrir modificaciones diagenéticas importantes o destrucción, ofreciendo, por ello, un excelente entorno para estudiar los procesos de biomineralización (desde los propios microorganismos activos a sus depósitos minerales). Las nuevas tendencias en geomicrobiología se basan en la conjunción de diferentes metodologías (microclima, petrología, geoquímica, hidroquímica, microbiología, biología molecular) con un objetivo común: 1) determinar el papel de las diferentes comunidades microbianas que habitan los ambientes subterráneos en los procesos de transformación mineral; 2) identificar las propiedades físicas y químicas de las fases cristalinas bioinducidas, y 3) determinar las condiciones ambientales y las propiedades composicionales y texturales de los soportes rocosos naturales (biorreceptividad) que favorecen o inhiben el desarrollo de las comunidades microbianas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Albertano P., Moscone D., Palleschi G., Hermosin B., Saiz-Jiménez C., Sánchez-Moral S., Hernández-Marine M., Urzì C., Groth I., Schroeckh V., Saarela M., Mattila- Sandholm T., Gallon J. R., Graziottin F., Bisconti F., Giuliani R. (2003). Cyanobacteria attack rocks (CATS): Control and preventive strategies to avoid damage caused by cyanobacteria and associated microorganisms in Roman Hypogean Monuments. In: Molecular Biology and Cultural Heritage (C. Saiz-Jiménez, edit.). Swets & Zeitlinger, Lisse (NL), 151-162.

Ascaso, C. y Wierzchos, J. (2003). The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol. J., 20: 439-450. doi:10.1080/713851127

Awramik, S. M. (1992). The oldest records of photosynthesis. Photosynthesis Res., 33: 75-89. doi:10.1007/BF00039172

Banfield, J. F. y Nealson, K. H. (1997). Geomicrobiol. Rev. Mineral., 35: 448.

Barton, H. A., Taylor, M. R. y Pace, N. R. (2004). Molecular Phylogenetic Analysis of a Bacterial Community in an Oligotrophic Cave Environment. Geomicrobiol. J., 21: 11-20. doi:10.1080/01490450490253428

Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J. A. (2006). Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. India, 90: 58-64.

Blair, N., Leu, A., Muñoz, E., Olsen, J., Kwong, E. y Des Marais, D. (1985). Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. Environ. Microb., 50: 996-1001.

Bolliger, C., Schönholzer, F., Schroth, M. H., Hahn, D., Bernasconi, S. y Zeyer, J. (2000). Characterizing intrinsic bioremediation in a petroleum hydrocarboncontaminated aquifer by combined chemical, isotopic and biological analyses. Bioremed. J., 4: 359-371. doi:10.1080/10889860091114301

Boquet, E., Bordonat, A. y Ramos Cormenzana, A. (1973). Production of calcite crystals by soil bacteria is a general phenomenon. Nature, 246: 527-528. doi:10.1038/246527a0

Borsato, A., Frisia, S., Jones, B. y Van der Borg, K. (2000). Calcite moonmilk: cristal morphology and environment of formation in caves in the Italian Alps. J. Sedim. Res., 70: 1179-1190. doi:10.1306/032300701171

Brock, T. D. y Madigan, M. T. (1991). Biology of microoganisms. 6th edition. Prentice Hall, Englewood Cliffs, New Jersey, 991 págs.

Buzolyova, L. S. y Somov, G. P. (1999). Autotrophic assimilation of CO2 and C1-compounds by pathogenic bacteria. Biochemistry (Moscow), 64: 1146-1149.

Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Preite-Martínez, M. y Lepidi, A. (2004). Involvement of Microorganisms in the Formation of Carbonate Speleothems in the Cervo Cave (L’Aquila-Italy). Geomicrobiol. J., 21: 497-509. doi:10.1080/01490450490888109

Cañaveras, J. C., Sánchez-Moral, S., Sanz Rubio, E., Bedoya, J., Soler, V., Groth, I., Schumann, P., Laiz, L., González, I. y Saiz-Jiménez, C. (1999). Microbial communities associated to hydromagnesite and needle fiber aragonite deposits in a karstic cave (Altamira, Northern Spain). Geomicrobiol. J., 16: 9-25. doi:10.1080/014904599270712

Cañaveras, J. C., Sánchez-Moral, S., Soler, V. y Saiz- Jiménez, C. (2001). Microorganisms and Microbially Induced Fabrics in Cave Walls. Geomicrobiol. J., 18: 223-240. doi:10.1080/01490450152467769

Cañaveras, J. C., Cuezva, S., Sánchez-Moral, S., Lario, J., Laiz, L., González, J. M. y Saiz-Jiménez, C. (2006). On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 93: 27-32. doi:10.1007/s00114-005-0052-3

Castanier, S., Le Métayer-Levrel, G. y Perthuisot J.-P. (1999). Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sedim. Geol., 126: 9-23. doi:10.1016/S0037-0738(99)00028-7

Castanier, S., Le M’etayer-Levrel, G., Perthuisot, J. P. Bacterial roles in the precipitation of carbonate minerals. (2000). In: Microbial Sediments (R. E. Riding, R. E. y S. M. Awramik, edit.) Springer-Verlag, Heidelberg, 32-39.

Coates, J. D., Ellis, D. J., Gaw, C. V. y Lovley, D. R. (1999). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol., 49: 1615-1622.

Cuezva, S., Cañaveras, J. C., González, R., Lario, J., Luque, L., Saiz, C., Sánchez-Moral, S. y Soler, V. (2003). Origen bacteriano de espelotemas tipo moonmilk en ambiente kárstico (Cueva de Altamira, España). Estudios Geol., 59: 145-157.

Dove, P. M., De Yoreo, J. J. y Weiner S. (edit.) (2003). Biomineralization. Reviews in Mineralogy & Geochemistry, 54. Geochemical Society, St. Louis, MO, and Mineralogical Society of America, Washington, 381 págs.

Ehrlich, H. L. (1998). Geomicrobiology.: its significance for geology. Earth-Sci. Rev., 45: 45-60. doi:10.1016/S0012-8252(98)00034-8

Ehrlich, H. L. (2002). Geomicrobiology., 4th ed. Marcel Dekker, New York, 768 págs.

Engel, A. S., Porter, M. I., Kinkle, B. K. y Kane, T. C. (2001). Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol. J., 18: 259-274. doi:10.1080/01490450152467787

Forti, P. (2001). Biogenic speleothems: an overwiew. Int. J. Speleol., 30: 39-56.

González, J. M. y Saiz-Jiménez, C. (2004). Microbial activity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J. of Separation Science, 27: 174-180. doi:10.1002/jssc.200301609

González, J. M. y Saiz-Jiménez, C. (2005). Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments. Int. Microbiol., 8: 189-194.

González, J. M., Portillo, M. C., Saiz-Jiménez, C. (2006). Metabolically active Crenarchaeota in Altamira Cave. Naturwissenschaften, 93: 42-45. doi:10.1007/s00114-005-0060-3

Guillitte, O. (1995). Bioreceptivity: a new concept for building ecology studies. Sci. Total Environ., 167: 215-220. doi:10.1016/0048-9697(95)04582-L

Holmes, A. J., Tujula, N. A., Holley, M., Contos, A., James, J. M., Rogers, P., Gillings, M. R. (2001). Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol., 3: 256-264. doi:10.1046/j.1462-2920.2001.00187.x

Hose, L. D., Palmer, A. N., Palmer, M. V., Northup, D. E., Boston, P. J. y Duchene, H. R. (2000). Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol., 169: 399-423. doi:10.1016/S0009-2541(00)00217-5

Hoyos, M., Soler, V., Cañaveras, J. C., Sánchez-Moral, S. y Sanz-Rubio, E. (1998). Microclimatic characterization of a karst system. Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol., 33: 231-242. doi:10.1007/s002540050242

Kellerman, K. F. (1915). Relation of bacteria to deposition of calcium carbonate. Geol. Soc. Am. Bull., 26: 58.

Laiz, L., González, J. M., y Saiz-Jiménez, C. (2003). Microbial communities in caves: Ecology, physiology, and effects on paleolythic paintings. In: Art, Biology, and Conservation: Biodeterioration of works of Art (R. J. Koestler, V. R. Koestler, A. E. Carola y F. E. Nieto-Fernández, edit.). The Metropolitan Museum of Art, New York, 210-225.

Mastromei, G., Biagiotti, L., Daly, S., Perito, B. y Tiano, P. (1999). Stone reinforcement by biomediated calcite crystal precipitation. International Conference on Microbiology and Conservation, (ICMC’99), Florence, 253-256.

McCallum, M. F., y Guhathakurta, K. (1970). The precipitation of calcium carbonate from seawater by bacteria isolated from Bahama bank sediments. J. Appl. Bacteriol., 33: 649-655.

Molin, S. y Givskov, M. (1999). Application of molecular tools for in situ monitoring of bacterial growth activity. Environ. Microbiol., 1: 383-391. doi:10.1046/j.1462-2920.1999.00056.x

Northup, D. E., Reysenbach, A. y Pace, N. (1997). Microorganisms and speleothems. In: Cave Minerals of the World (Hill, C. y Forti, P., edit.). NSS, Huntsville, 261-266.

Northup, D. E., Dahm, C. N., Melim, L. A., Spilde, M. N, Crossey, L. J., Lavoie, K. H., Mallory, L. M., Boston, P. J., Cunningham, K. I., y Barns, S. M. (2000). Evidence por geomicrobiological interactions in Guadalupe caves. J. Cave Karst Stud., 62: 80-90.

Northup, D. E. y Lavoie, K. H. (2001). Geomicrobiol. Of caves: A review. Geomicrobiol. J., 18: 199-220. doi:10.1080/01490450152467750

Rivadeneyra, M. A., Delgado, R., Delgado, G., Del Moral, A., Ferrer, M. R., Ramos-Cormenzana, A. (1994). Precipitation of carbonates by Bacillus sp. Isolated from saline soils. Geomicrobiol. J., 11: 174-184.

Rodríguez-Navarro, C., Rodríguez-Gallego, M., Ben Chekroun, K. y González-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appl. Environ. Microb., 69: 2182-2193. doi:10.1128/AEM.69.4.2182-2193.2003

Sánchez-Moral, S., Cañaveras, J. C., Laiz, L, Saiz, C., Bedoya, J. y Luque, L. (2003a). Biomediated precipitation of calcium carbonate metastable phases in hypogean environments. A short review. Geomicrobiol. J., 20: 491-500. doi:10.1080/713851131

Sánchez-Moral, S., Bedoya, J., Luque, L., Cañaveras, J. C., Jurado, V., Laiz, L. y Saiz, C. (2003b). Biomineralization of different crystalline phases by bacteria isolated from catacombs. In: Molecular Biology & Cultural Heritage (C. Saiz, edit.). Balkema, Lisse, 179-185.

Sánchez-Moral, S., Luque, L., Cañaveras, J. C., Laiz, L., Jurado, V., Hermosín, B. y Saiz-Jiménez, C. (2004). Bioinduced barium precipitation in San Callixtus and Domitilla Catacombs. Ann. Microbiol., 54: 1-12.

Sánchez-Moral, S., Luque, L., Cuezva, S., Soler, V., Benavente, D., Laiz, L., González, J. M., Saiz, C. (2005). Deterioration of building materials in Roman catacombs: The influence of visitors. Sci. Total Environ., 349: 260-276. doi:10.1016/j.scitotenv.2004.12.080

Schabereiter-Gurtner, C., Saiz-Jiménez, C., Piñar, G., Lubitz, W. y Rölleke, S. (2002). Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiol. Lett., 211: 7-11. doi:10.1111/j.1574-6968.2002.tb11195.x

Schabereiter-Gurtner, C., Saiz, C., Piñar, G., Lubitz, R. y Rölleke, S. (2004). Phylogenetic diversity of bacteria associated with Paleolithic painting and surrounding rock walls in two spanish caves (Llonín, La Garma). FEMS Microbiol. Ecol., 47: 235-247. doi:10.1016/S0168-6496(03)00280-0

Smith, K. S. y Ferry, J. G. (2000). Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev., 24: 335-366. doi:10.1111/j.1574-6976.2000.tb00546.x

Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M. y Breznak, J. A. (2004). New strategies for cultivation and detection of previously uncultured microbes. Appl. environ. Microbiol., 70: 4748-4755. doi:10.1128/AEM.70.8.4748-4755.2004

Tripp, B. C., Smith, K. y Ferry, J. G. (2001). Carbonic anhydrase: new insights for an ancient enzyme. J. Biol. Chem., 276: 48615-48618. doi:10.1074/jbc.R100045200

Verrecchia, E. P. y Verrecchia, K. E. (1994). Needlefiber calcite: a critical review and a proposed classification. J. Sediment. Res., A64: 650-664.

Vlasceanu, L., Sarbu, S. M., Engel, A. S. y Kinkle, B. K. (2000). Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol. J., 17: 125-140. doi:10.1080/01490450050023809

Ward, D. M., Weller, R. y Bateson, M. M. (1990). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345: 63-65.

Warscheid, Th. y Braams, J. (2000). Bioreceptivity of building stones. Int. Biodeter. Biodegr., 46: 343-368.

Wierzchos, J., Ascaso, C., Agar, F. J., García-Orellana, I., Carmona-Luque, A. y Respaldiza, M. A. (2006a). Identifying elements in rocks from the Dry Valleys desert (Antarctica) by ion beam proton induced X-ray emission. Nuclear instruments & methods in physics research section b-beam interactions with materials and atoms, 249: 571-574. doi:10.1016/j.nimb.2006.03.057

Wierzchos, J., Ascaso, C. y McKay, C. P. (2006b). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6: 415-422. doi:10.1089/ast.2006.6.415

Zavarzin, G. A. (2002). Microbial Geochemical Calcium Cycle. Microbiology, 71: 1-17. doi:10.1023/A:1017945329951

Zimmermann, J., González, J. M., Ludwig, W., Saiz- Jiménez, C. (2005). Detection and phylogenetic relationships of a highly diverse uncultured acidobacterial community on paleolithic paintings in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol. J., 22: 379-388. doi:10.1080/01490450500248986

Descargas

Publicado

2006-12-30

Cómo citar

Sánchez-Moral, S., González, J. M., Cañaveras, J. C., Cuezva, S., Lario, J., Cardell, C., Elez, J., Luque, L., & Saiz-Jiménez, C. (2006). Procesos de precipitación mineral bioinducidos en sistemas kársticos subterráneos: breve revisión y nuevas tendencias. Estudios Geológicos, 62(1), 43–52. https://doi.org/10.3989/egeol.066215

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>