Contribution of magnetic parameters to the identification of stratigraphic levels and pedogenesis (Angel Cave, Spain)

Authors

  • Abderrezak Djerrab Université de Tébessa, Faculté des Sciences, Tébessa
  • Ian Hedley Université de Genève, Département de Minéralogie, Genève
  • Pierre Camps Géosciences Montpellier, CNRS et Université Montpellier 2
  • Salah Abdessadok Département de Préhistoire, Muséum National d’Histoire Naturelle, Paris
  • Cecilio Barroso Ruiz
  • Daniel Botella Ortega Museo Arqueológico y Etnológico de Lucena

DOI:

https://doi.org/10.3989/egeol.40946.222

Keywords:

Angel cave, Cordoba, Spain, magnetic susceptibility, remanent magnetization, iron oxides, pedogenesis

Abstract


The Angel cave, dated between the middle to the base of the Upper Pleistocene, contains important lithic and faunal material, and is of exceptional interest in the Iberian Peninsula. Because of its importance, and in the framework of an European research project (N°IDPH/ER/05), a multidisciplinary study including palaeomagnetism, was undertaken on the sedimentary deposit and the archaeological material. The study of the magnetic properties of the cave sediments reveals the presence of two magnetostratigraphic units. The lower stratigraphic unit is characterized by an important concentration of magnetic grains with a considerable percentage of superparamagnetic grains (SP). The magnetic minerals are of secondary origin, fine grained, magnetically soft and dominated by magnetite and maghemite. The latter have undergone an important post-depositional geochemical evolution (marked pedogenesis). On the contrary, the upper unit is characterized by weaker magnetic parameters and the magnetic minerals are harder, of detrital origin, dominated by hematite.

Downloads

Download data is not yet available.

References

Botella Ortega, D. (1990). El yacimiento musteriense de la C.S.A. 1 (Lucena). Cuaderno de campo. Vª Reunión de Campo de AEQUA-Andalucía. Ayuntamiento de Lucena. Lucena (Córdoba): 65-79.

Botella Ortega, D.; Barroso Ruiz, C.; Riquelme Cantal, J.A.; Abdessadok, S.; Caparrós, M.; Bermejo, L.V.; Monge Gómez, G. & García Solano, J.A. (2006). La Cueva del Ángel (lucena, córdoba), a site of the middle and early Pleistocene in the south of the Iberian Peninsula. Trabajos de Prehistoria, 63 (2): 153-165. http://dx.doi.org/10.3989/tp.2006.v63.i2.22

Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A. & O'Grady, K. (1996). Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 124: 228_240.

Dearing, J. (1999). Environmental Magnetic Susceptibility Using the Bartington MS2 System. British Library Cataloguing in Publication Data, 54 pp.

Deng, C.L.; Zhu, R.X.; Verosub, K.L.; Singer, M.J. & Yuan, B.Y. (2000). Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese loess plateau. Geophysical Research Letters, 27(22): 3715-3718. http://dx.doi.org/10.1029/2000GL008462

Djerrab, A. & Camps, P. (2011). Propriétés magnétiques du remplissage de la Caverna delle Manie (Finale Ligurie, Italie). ArcheoSciences, 34: 81-96.

Djerrab, A. & Aïfa, T. (2010a). Stratigraphy and Palaeoenvironment of the Karaïn Cave Infill, Antalya, Turkey. Rock Magnetic Investigations. Studia Geophysica et Geodaetica, 54: 49-76. http://dx.doi.org/10.1007/s11200-010-0003-0

Djerrab, A. & Hedley, I. (2010b). Etude des minéraux magnétiques du site préhistorique de la Caverna delle Fate (Finale Ligurie, Savona, Italie). Quaternaire, 21 (2): 265-280.

Dunlop, D.J. & Özdemir Ö. (1997). Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, New York, London and Cambridge, 573 pp. http://dx.doi.org/10.1017/CBO9780511612794

Egli, R. (2003). Analysis of the field dependence of remanent magnetization curves. Journal of Geophysical Research, 108 (B2), 2081. http://dx.doi.org/10.1029/2002JB002023

Evans, M.E. & Heller, F. (2003). Environmental magnetism. Principles and applications of environmagnetics. Academic Press, 299 pp.

Eyre, J.K. (1997). Frequency-dependence of magnetic susceptibility for populations of single-domain grains. Geophysical Journal International, 129: 209_211.

Geiss, C.E. & Zanner C.W. (2006). Sediment magnetic signature of climate in modern loessic soils from the Great Plains. Quaternary International.

Guo, B.; Zhu, R.; Bai, L. & Florindo, F. (2001). Rock magnetic properties of a loess-paleosol couple along an N-S transect in the Chinese Loess Plateau. Science in China (Series D), 44 (12): 1099 - 1109. http://dx.doi.org/10.1007/BF02906866

Hartstra, R. L. (1982). A comparative study of the ARM and Isr of some natural magnetites of MD and PSD grain size. Geophysical Journal of the Royal Astronomical Society, 71 (2): 497 - 518. http://dx.doi.org/10.1111/j.1365-246X.1982.tb05999.x

Heslop, D.; Dekkers, M.J.; Kruiver, P.P. & Van Oorschot, I.H.M. (2002). Analysis of isothermal remanent magnetisation acquisition curves using the expectation-maximisation algorithm. Geophysical Journal International, 148: 58-64. http://dx.doi.org/10.1046/j.0956-540x.2001.01558.x

Huet, A.M. (2003). Étude stratigraphique et sédimentologique de la Cueva del Ángel, province de Cordoue, Espagne. Mémoire de D.E.A. de Muséum National d’Histoire Naturelle, Paris, 27 pp.

IGME, (1991). "Mapa Geológico de Espa-a". Hoja 989, 17- 40. Madrid.

Kruiver, P.P.; Dekkers, M.J. & Heslop, D. (2001). Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth and Planetary Science Letters, 189: 269_276.

Kruiver, P.P.; Langereis, C.G.; Dekkers, M.J. & Krijgsman, W. (2003). Rock-magnetic properties of multi-component natural remanent magnetisation in alluvial red beds (NE Spain). Geophysical Journal International, 153: 317_332.

Lanci, L.; Hirt, A.M.; Lowrie, W.; Lotter, A.F.; Lemcke, G. & Sturm, M. (1999). Mineral-magnetic record of Late Quaternary climatic changes in a high Alpine lake. Earth and Planetary Science Letters, 170: 49-59. http://dx.doi.org/10.1016/S0012-821X(99)00098-9

Le Borgne, E. (1960). Influence du feu sur les propriétés magnétiques du sol sur celles du schiste et du granite. Annales de Géophysique, 16: 159-196.

Maher, B.A. (1986). Characterisation of soils by mineral magnetic measurements. Physics of the Earth and Planetary Interiors, 42: 76-92. http://dx.doi.org/10.1016/S0031-9201(86)80010-3

Maher, B.A. (1988). Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal of the Royal Astronomical Society, 94: 83-96. http://dx.doi.org/10.1111/j.1365-246X.1988.tb03429.x

Marshall, A. (1998). Visualising burnt areas; patterns of magnetic susceptibility at Guiting Power 1 Round Barrow (Glos., UK). Archaeological Prospection, 5: 159-177. http://dx.doi.org/10.1002/(SICI)1099-0763(199809)5:3<159::AID-ARP104>3.0.CO;2-D

Mullins, C.E. (1973). Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single-domain assemblies of magnetite and maghemite. Journal of Geophysical Research, 78 (5): 804_809.

Mullins, C.E. (1977). Magnetic susceptibility of the soil and its significance in soil science - a review. European Journal of Soil Science, 28: 223-246. http://dx.doi.org/10.1111/j.1365-2389.1977.tb02232.x

Özdemir, Ö. & Dunlop, D.J. (2000). Intermediate magnetite formation during dehydration of goethite. Earth and Planetary Science Letters, 177: 59-67. http://dx.doi.org/10.1016/S0012-821X(00)00032-7

Özdemir, Ö. & Dunlop, D.J. (2010). Hallmarks of maghemitization in low-temperature remanence cycling of partially oxidized magnetite nanoparticles. Journal of Geophysical Research, 115: B02101, 10 PP.

Peters, C., & Thompson, R. (1998a). Supermagnetic enhancement, superparamagnetism and archaeological soils. Geoarchaeology, 13: 401- 413.

Peters, C. & Thompson, R. (1998b). Magnetic identification of selected natural iron oxides and sulphides. Journal of Magnetism and Magnetic Materials, 183: 365-374. http://dx.doi.org/10.1016/S0304-8853(97)01097-4

Robertson, D.J. & France, D.E. (1994). Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Physics of the Earth and Planetary Interiors, 82 (22): 223_234.

Schmidbauer, E. & Schembera, N. (1987). Magnetic hysteresis properties and anhysteretic remanent magnetization of spherical Fe3O4 particles in the grain size range 60-160 nm. Physics of the Earth and Planetary Interiors, 46 (1-3): 77-83. http://dx.doi.org/10.1016/0031-9201(87)90173-7

Tite, M. S., & Mullins, C. E. (1971). Enhancement of the magnetic susceptibility of soils on archaeological sites. Archaeometry 13: 209-219. http://dx.doi.org/10.1111/j.1475-4754.1971.tb00043.x

Verosub, K.L.; Fine, P.; Singer, M.J. & Tenpas, J. (1993). Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21:1011-1014. http://dx.doi.org/10.1130/0091-7613(1993)021<1011:PAPIOT>2.3.CO;2

Verosub, K.L. & Roberts, A.P. (1995). Environmental magnetism-past, present and future. Journal of Geophysical Research, 100 (B2), 2175-2192. http://dx.doi.org/10.1029/94JB02713

Weston, D.G. (2004). The influence of waterlogging upon resultant susceptibilities: a series of laboratory reconstructions. Archaeological Prospection, 11: 107-120. doi:10.1002/arp.230 http://dx.doi.org/10.1002/arp.230

Worm, H.U. (1998). On the superparamagnetic-stable single domain transition for magnetite, and frequency dependency of susceptibility. Geophysical Journal International, 133: 201_206.

Zouhair, S. (1996). Intérêt de la datation des planchers stalagmitiques par les méthodes fondées sur le déséquilibre dans les familles de l’uranium (230Th/234U). Application à quelques sites préhistoriques. Mémoire de D.E.A du Muséum National d'Histoire Naturelle. Paris.

Downloads

Published

2013-06-30

How to Cite

Djerrab, A., Hedley, I., Camps, P., Abdessadok, S., Barroso Ruiz, C., & Botella Ortega, D. (2013). Contribution of magnetic parameters to the identification of stratigraphic levels and pedogenesis (Angel Cave, Spain). Estudios Geológicos, 69(1), 71–84. https://doi.org/10.3989/egeol.40946.222

Issue

Section

Articles