Geochemical characterization of the fire-fountain fed deposits of Las Herrerías volcano (Campo de Calatrava Volcanic Field, Ciudad Real)
DOI:
https://doi.org/10.3989/egeol.41726.317Keywords:
Geochemistry, spatter, melanephelinite, fire-fountain, Las Herrerías, CalatravaAbstract
The Las Herrerías volcano (Bolaños de Calatrava, Campo de Calatrava Volcanic Field) is characterized by the great amount and variety of fire-fountain fed deposits. All these deposits are compositionally similar, being constituted by magnesium-rich (MgO = 11.58–4.19%), aluminium-poor (Al₂O₃ = 9.64–10.99%) highly sodic (Na₂O = 2.24–3.81%) melanephelinites, with high contents in rare earth-elements (10x–200x chondrite), particularly in light-rare earth elements with respect to the heavy ones [(La/Lu)N = 32–35]. Contrary to the equivalent melanephelinites of this volcanic field, the relatively low contents in Ni (233–286 ppm), Cr (393–520 ppm) and magnesium number (Mg* = 45–54) indicate that these rocks do not correspond with primary melts. On the other hand, the variable distribution of clinopyroxene in the magma during eruption would be responsible for the slight compositional differences observed in the studied samples. Finally, we argue that these fire fountains were developed in a continental intraplate setting.
Downloads
References
Ancochea, E. (1982). Evolución espacial y temporal del vulcanismo reciente de España Central. Tesis Doctoral, Universidad Complutense de Madrid, 675 pp.
Ancochea, E. (2004). La región volcánica del Campo de Calatrava. In: Geología de España (Vera, J.A., Ed.). SGE-IGME, Madrid, 676–677.
Carracedo Sánchez, M.; Sarrionandia, F.; Arostegi, J. & Gil Ibarguchi, J.I. (2014). Achnelitos generados en fuentes de lava de la región volcánica de Campo de Calatrava (Cidudad Real, España). Geogaceta, 55: 91–94.
Carracedo Sánchez, M.; Sarrionandia, F.; Arostegui, J.; Eguiluz, L. & Gil Ibarguchi, J.I. (2012). The transition of spatter to lava-like body in lava fountain deposits: features and examples from the Cabezo Segura volcano (Calatrava, Spain). Journal of Volcanology and Geothermal Research, 227–228: 1–14. http://dx.doi.org/10.1016/j.jvolgeores.2012.02.016
Cebriá, J.M. (1992). Geoquímica de las rocas basálticas y leucititas de la Región Volcánica de Campo de Calatrava, España. Tesis Doctoral, Universidad Complutense de Madrid, 314 pp.
Cebriá, J.M. & López Ruiz, J. (1995). Alkali basalts and leucitites in an extensional intracontinental plate setting. Lithos, 35: 27–46. http://dx.doi.org/10.1016/0024-4937(94)00027-Y
Condie, K.C. (2005). High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 79: 491–504. http://dx.doi.org/10.1016/j.lithos.2004.09.014
García de Madinabeitia, S.; Sánchez Lorda, M.E. & Gil Ibarguchi, J.I. (2008). Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Analytica Chimica Acta, 625: 117–130. http://dx.doi.org/10.1016/j.aca.2008.07.024
González, E.; Gosálvez, R.; Becerra, R. & Escobar, E. (2007). Actividad eruptiva holocena en el Campo de Calatrava (volcán Columba, Ciudad Real, España). Proceedings of XII Reunión Nacional del Cuaternario, AEQUA, Ávila, Spain, 143–144.
Head, JW. & Wilson, L. (1989). Basaltic pyroclastic eruptions: Influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. Journal of Volcanology and Geothermal Research, 37: 261–271. http://dx.doi.org/10.1016/0377-0273(89)90083-8
Houghton, B.F. & Wilson, C.J.N. (1989). A vesicularity index for pyroclastic deposits. Bulletin of Volcanology, 51: 451–462. http://dx.doi.org/10.1007/BF01078811
Ladle, G.H. (1978). Scanning electron microscopy and petrography of glassy particles produced by lava fountains eruptions. Lunar and Planetary Institute, 325: 203 pp.
Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J.; Lameyre, J.; Sabine, P.A.; Schmid, R.; Sorensen, H. & Wolley, A.R. (2002). Igneous Rocks. A Classification and Glossary of terms. Cambridge University Press, 236 pp. http://dx.doi.org/10.1017/CBO9780511535581
López Ruiz, J.; Cebriá, J.M. & Doblas, M. (2002). Cenozoic volcanism I: the Iberian Peninsula. In: The Geology of Spain (Gibbons, W. & Moreno, T. Eds.). The Geological Society, London, 417–438.
Maaløe, S. (1973). Temperature asd pressure relations of ascending primary magmas. Journal of Geophysical Research, 78: 6877–6886. http://dx.doi.org/10.1029/JB078i029p06877
Martí, J.; Planagumà, L.; Geyer, A.; Canal, E. & Pedrazzi, D. (2011). Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). Journal of Volcanology and Geothermal Research, 201: 178–193. http://dx.doi.org/10.1016/j.jvolgeores.2010.12.009
Meschede, M. (1986). A method of dicriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56: 207–218. http://dx.doi.org/10.1016/0009-2541(86)90004-5
Nicholson, H. & Latin, D. (1992). Olivine tholeiites from Krafla, Iceland: evidence for variation in melt fraction within a plume. Journal of Petrology, 33: 1105–1024. http://dx.doi.org/10.1093/petrology/33.5.1105
Pearce, J.A. & Cann, J.R. (1973). Tectonic setting of basic volcanie rocks determined using trace element analysis. Earth and Planetary Science Letters, 19: 290–300. http://dx.doi.org/10.1016/0012-821X(73)90129-5
Porrit, L.A.; Russell, J.K. & Quane, S.L. (2012). Pele's tears and spheres: Examples from Kilauea Iki. Earth and Planetary Science Letters, 333–334: 171–180. http://dx.doi.org/10.1016/j.epsl.2012.03.031
Ramírez Merino, J.I.; Ancoechea, E. & Pérez González, A. (1985). Mapa Geológico de España 1:50.000, hoja n° 785 (Almagro). IGME.
Stovall, W.K.; Houghton, B.F.; Gonnermann, H.M.; Fagents, S.A. & Swanson, D.A. (2010). Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kilauea Iki 1959 eruption. Bulletin of Volcanology, 73: 511–529. http://dx.doi.org/10.1007/s00445-010-0426-z
Sumner, J.M. (1998). Formation of clastogenica lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima volcano, eastern Japan. Bulletin of Volcanology, 60: 195–212. http://dx.doi.org/10.1007/s004450050227
Sun, S.S. & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Ocean Basins (Saunders, A.D. & Norry, M.J. eds.). Geological Society, London, Special Publication 42: 313–345.
Treuil, M. & Joron, J. M. (1975). Utilisation des éléments hygromagmatophiles pour la simplification de la modélisation quantitative des processus magmatiques. Exemples de l'Afar et de la dorsade médioatlantique. Société Italiana Mineralogié et Petrologié, 31: 125–174.
Valentine, G.A.; Perry, F.V. & Wolde, G. (2000). Field characteristics of deposits from spatter-rich pyroclastic density currents at Summer Coon volcano, Colorado. Journal of Volcanology and Geothermal Research, 104: 187–199. http://dx.doi.org/10.1016/S0377-0273(00)00206-7
Valentine, G.A.; Perry, F.; Krier, D.; Keating, G.N.; Kelley, R.E. & Cogbill, A.H. (2006). Small volume basaltic volcanoes: eruptive products and processes and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. GSA Bulletin, 118, 1313–1330. http://dx.doi.org/10.1130/B25956.1
Weaver, B.L. (1991). Trace element evidence for the origin of ocean-island basalts. Geology, 19: 123–126. http://dx.doi.org/10.1130/0091-7613(1991)019<0123:TEEFTO>2.3.CO;2
Wilson, M. (ed.) (1989). Igneous Petrogenesis. Unwin Hyman Ltd, London, 466 pp. http://dx.doi.org/10.1007/978-1-4020-6788-4
Wood, D.A. (1980). The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11–30. http://dx.doi.org/10.1016/0012-821X(80)90116-8
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.