Correlation between chemical, crystallographic and spectroscopic parameters in graphite thermometry applied to a contact aureole of La Soledad monzogranite (Venezuelan Andes)

Authors

  • K. Reategui Centro de Geoquímica, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Central de Venezuela https://orcid.org/0000-0003-3920-0643
  • M. Martínez Centro de Geoquímica, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Central de Venezuela - Facultad de Ciencias de la Ingeniería, Universidad Estatal Península de Santa Elena https://orcid.org/0000-0003-0985-5673

DOI:

https://doi.org/10.3989/egeol.42748.444

Keywords:

Graphite, contact metamorphism, Venezuela, metapelites, XRD, Raman, Carbon isotopes

Abstract


Graphite samples from a metamorphic contact aureole between phyllites of the Cerro Azul Association (Palaeozoic) and La Soledad Monzogranite, in the Venezuelan Andes, were studied by chemical (% inorganic carbon and isotopic distribution), crystallographic (DRX) and spectroscopic (Raman) techniques in order to assess changes in the graphite in the vicinity of the contact, the correlation between the different parameters, and the determination of the higher temperature reached by the host rock during igneous intrusion. The δ13C reached less negative values near the monzogranite, caused by devolatilization; the graphite present just in contact with the pluton experienced retrograde recrystallization, which causes a shift towards more negative values. The calculated degree of graphitization intervals (GD = 53–80) corresponds to a well-structured mineral with ordered packaging. The peak metamorphic temperature at the contact was calculated from crystallographic (XRD) and spectroscopic (Raman) parameters with great agreement in both techniques, registering the 528 ± 16 and 526 ± 20 ºC respectively. The metapelitic rocks reached the Cordierite Zone (cordierite + biotite + muscovite) in the contact aureole where the graphite is well ordered and in hexagonal microtexture. Factors such as fluid activity and the subsequent retrograde recrystallization have an effect on isotopic redistributions after the intrusive event, as well as on the crystallinity change rate with the temperature, avoiding a clear correlation between the isotopic variations of 13C in graphite and the temperature.

Downloads

Download data is not yet available.

References

Aoya, M.; Kouketsu, Y.; Endo, S.; Shimizu, H.; Mizukami, T. & Nakamura, D. (2010). Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. Journal of Metamorphic Geology, 28: 895–914. https://doi.org/10.1111/j.1525-1314.2010.00896.x

Baumgartner, L. & Valley, J. (2001). Stable isotope transport and contact metamorphic fluid flow. Reviews in Mineralogy and Geochemistry, 43: 415–467. https://doi.org/10.2138/gsrmg.43.1.415

Beyssac, O.; Rouzaud, J.; Goffé, B.; Brunet, F. & Chopin, C. (2002). Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20: 859–871. https://doi.org/10.1046/j.1525-1314.2002.00408.x

Bonijoly, M.; Oberlin, M. & Oberlin, A. (1982). A possible mechanism for natural graphite formation. International Journal of Coal Geology, 1: 283–312. https://doi.org/10.1016/0166-5162(82)90018-0

Castro, M. & Canto, M. (1992). An ultrasonic method for the separation of carbonaceous material from schist for the determination of graphitization degree by X-ray diffraction. Chemical Geology, 100: 191–199. https://doi.org/10.1016/0009-2541(92)90112-I

Cesare, B. & Maineri, C. (1999). Fluid-present anatexis of metapelites at El Joyazo (SE Spain): Constraints from Raman spectroscopy of graphite. Contributions to Mineralogy and Petrology, 135: 41–52. https://doi.org/10.1007/s004100050496

Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez, A. & Tascón, J. (1998). Comparative performance of X ray diffraction and Raman microprobe techniques for the study of carbon materials. Journal of Materials Chemistry, 8: 2875–2879. https://doi.org/10.1039/a805841e

Deines, P. (2004). Carbon isotope effects in carbonate systems. Geochimica at Cosmochimica Acta, 68: 2569–2679. https://doi.org/10.1016/j.gca.2003.12.002

French, B. (1964). Graphitization of organic material in a progressively metamorphosed Precambrian iron formation. Science, 146: 917–918. https://doi.org/10.1126/science.146.3646.917 PMid:17777057

García, J. & Campos, V. (1972). Las rocas paleozoicas en la región del rio Momboy. Boletín de Geología, 5: 2, 796-806.

González de Juana, C.; Iturralde, J. & Picard, X. (1980). Geología de Venezuela y sus cuencas petrolíferas. Foninves, Caracas, 1030 pp.

Griffin, G. (1967). X-ray diffraction techniques applicable to studies of diagenesis and low rank metamorphism in humic sediments. Journal of Sedimentary Petrology, 37: 1006-1011.

Hilchie, L. & Jamieson, R. (2014). Graphite thermometry in a low-pressure contact aureole, Halifax, Nova Scotia. Lithos, 208–209: 21–33. https://doi.org/10.1016/j.lithos.2014.08.015

Hoefs, J. (1987). Stable isotope geochemistry, minerals and rocks., Springer-Verlag, Berlin, 241 pp. https://doi.org/10.1007/978-3-662-09998-8 PMid:3301091

Hoefs, J. & Frey, M. (1976). The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps. Geochimica et Cosmochimica Acta, 40: 945–951. https://doi.org/10.1016/0016-7037(76)90143-5

Hollister, L. & Burruss, R. (1976). Phase equilibria in fluid inclusions from the Khtada metamorphic complex. Geochimica et Cosmochimica Acta, 40: 163–175. https://doi.org/10.1016/0016-7037(76)90174-5

Kovisars, L. (1972). Geología de la parte nor-central de los Andes Venezolanos. Boletín de Geología, 5: 817–860.

Kwiecinska, B. & Petersen, H. (2004). Graphite, semi-graphite, natural coke, and natural char classification—ICCP system. International Journal of Coal Geology 57: 99–116. https://doi.org/10.1016/j.coal.2003.09.003

Landis, C. (1971). Graphitization of dispersed carbonaceous materials in metamorphic rocks. Lithos, 14: 215–224. https://doi.org/10.1007/BF00373366

Luque,F; Ortega,L; Barrenechea, J.; Millward, D.; Beyssac, O. & Huizenga, J. (2009). Deposition of highly crystalline graphite from moderate-temperature fluids. Geology, 37: 275–278. https://doi.org/10.1130/G25284A.1

Luque, F.; Crespo-Feo, E.; Barrenechea, J. & Ortega, L. (2012). Carbon isotopes of graphite : Implications on fluid history. Geoscience Frontiers, 3: 197–207. https://doi.org/10.1016/j.gsf.2011.11.006

Martínez, M. & Escobar, M. (2016). Ciencia del Carbón: Geología, Química, Petrografía, Geoquímica, Aplicaciones. Editor Antonio Madrid Vicente, Madrid, 231 pp.

Morikiyo, T. (1986). Hydrogen and carbon isotope studies on the graphite-bearing metapelites in the northern Kiso district of central Japan. Contributions to Mineralogy and Petrology, 94: 165–177. https://doi.org/10.1007/BF00592933

Nabelek, P.; Huff, T. & Wilke, M. (2002). Carbonic fluid production during regional and contact metamorphism in the Black Hills, USA. Goldschmidt Conference Abstracts, Davos (Switzerland), A543.

Nakamura, D. (1995). Comparison and interpretation of graphitization in contact and regional metamorphic rocks. The Island Arc, 4: 112–127. https://doi.org/10.1111/j.1440-1738.1995.tb00136.x

Nakamura, Y. & Akai, J. (2013). Microstructural evolution of carbonaceous material during graphitization in the Gyoja-yama contact aureole : HRTEM, XRD and Raman spectroscopic study. Journal of Mineralogical and Petrological Sciences, 108: 131–143. https://doi.org/10.2465/jmps.120625

Pattison, D. (2006). The fate of graphite in prograde metamorphism of pelites: An example from the Ballachulish aureole, Scotland. Lithos, 88: 85–99. https://doi.org/10.1016/j.lithos.2005.08.006

Satish-Kumar, M. & Wada, H. (2000). Carbon isotopic equilibrium between calcite and graphite in Skallen Marbles, East Antarctica: evidence for the preservation of peak metamorphic temperatures. Chemical Geology, 166: 173–182. https://doi.org/10.1016/S0009-2541(99)00189-8

Schubert, C. (1969). Guía de la excursión geológica, región Barinitas-Santo Domingo. IV Congreso Geológico Venezolano, Sociedad Venezolana de Geólogos, Caracas, 272–290. PMid:5762889

Tagiri, M. (1981). A measurement of the graphitizing degree by the X-ray Powder Diffractometer. Journal of Japanese Association of Mineralogists, 76: 345– 352. https://doi.org/10.2465/ganko1941.76.345

Tagiri, M. & Oba, T. (1986). Hydrothermal syntheses of graphite from bituminous coal at at 0.5–5 kbar water vapor pressure and 300-600°C. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 81: 260–271. https://doi.org/10.2465/ganko1941.81.260

Tagiri, M.; Yago, Y. & Tanaka, Y. (2000). Shuffled-cards structure and different P/T conditions in the Sanbagawa metamorphic belt, Sakuma-Tenryu area, central Japan. The Island Arc, 9: 188–203. https://doi.org/10.1046/j.1440-1738.2000.00272.x

Török, K. (1992). Cordierite-andalusite-bearing micaschist from the Garbonc-1 borehole (Central Transdanubia, W. Hungary) Geothermo-barometry and fluid inclusion study. European Journal of Mineralogy, 4: 1125– 1136. https://doi.org/10.1127/ejm/4/5/1125

Tracy, R. & Frost, B. (1991). Phase Equilibria and Thermobarometry of calcareous, ultramafic and mafic rocks and Iron formations. Reviews in Mineralogy and Geochemistry, 26: 207-289.

Turner, F. (1968). Metamorphic petrology. Mc Graw-Hill, New York, 318 pp.

Van Der Lelij, R.; Spikings, R.; Ulianov, A.; Chiaradia, M. & Mora, A. (2016) Palaeozoic and Early Jurassic history of the north western corner of Gondwana, and implications for the evolution of the Iapetus, Rh. Gondwana Research, 31: 271–294. https://doi.org/10.1016/j.gr.2015.01.011

Wada, H.; Tomita, T.; Matsuura, K.; Iuchi, K.; Ito, M. & Morikiyo, T. (1994). Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan. Contributions to Mineralogy and Petrology, 118: 217–228. https://doi.org/10.1007/BF00306643

Wopenka, B. & Pasteris, J. (1993). Structural characterization of kerogens to granulite-facies graphite : Applicability of Raman microprobe spectroscopy. American Mineralogist, 78: 533–557.

Published

2017-12-30

How to Cite

Reategui, K., & Martínez, M. (2017). Correlation between chemical, crystallographic and spectroscopic parameters in graphite thermometry applied to a contact aureole of La Soledad monzogranite (Venezuelan Andes). Estudios Geológicos, 73(2), e069. https://doi.org/10.3989/egeol.42748.444

Issue

Section

Articles