Miocene syntectonic fluvial and lacustrine sedimentation linked to a fault-parallel buttress syncline in the Nigüella sector (NW Iberian Range)

Authors

  • N. Santos Bueno Stratigraphy division. Department of Earth Sciences. University of Zaragoza - Institute for Research on Environmental Sciences of Aragón (IUCA) and Geotransfer group, University of Zaragoza https://orcid.org/0000-0002-2876-9554
  • C. Arenas Abad Stratigraphy division. Department of Earth Sciences. University of Zaragoza - Institute for Research on Environmental Sciences of Aragón (IUCA) and Geotransfer group, University of Zaragoza https://orcid.org/0000-0002-4212-0524
  • A. Gil Imaz Geodynamics (Structural Geology) division. Department of Earth Sciences. University of Zaragoza - Institute for Research on Environmental Sciences of Aragón (IUCA) and Geotransfer group, University of Zaragoza https://orcid.org/0000-0001-6110-1081

DOI:

https://doi.org/10.3989/egeol.43377.507

Keywords:

epósitos aluviales, Carbonatos lacustres, toba, sedimentación sintectónica, buttressing, Neógeno

Abstract


This paper discusses the sedimentary evolution of an area with Neogene fluvial and lacustrine deposits in the northwestern part of the Iberian Range, and its relation to the effects of Alpine compressional tectonics affecting a major, formerly extensional fault. Stratigraphic analyses allow characterizing three tectosedimentary units. Units 1 and 2 are dominated by clastics lithofacies, and are separated by an unconformity and the correlative conformity. Unit 3 is formed of tufa and micritic limestones and represents a sharp lithological change throughout the area. Total thickness is 120 m. These units are involved in two NNW-SSE Alpine trending, kilometric-scale structures: 1) the Nigüella fault, that put into contact Triassic rocks, in the footwall, with Cenozoic rocks, in the hanging-wall, and 2) the Nigüella syncline, subparallel to this fault, with strata dips between 19° up to 70°. In units 1 and 2, four facies associations represent deposition in proximal to middle alluvial fans, from local reliefs, and a braided fluvial system with limited floodplain, running southward; both environments record minor fluvial and lacustrine carbonate deposition. Three other facies associations represent dominant carbonate deposition, either palustrine-fluvial-lacustrine or lacustrine settings. In the three units, oncoid and phytoclast rudstones formed in shallow, low-sinuosity channels and pools with extensive tufaceous palustrine areas, where hydrophilous plants throve. In contrast, micritic limestones with ostracods and marls correspond to offshore dominant carbonate lacustrine deposition in still and permanent lakes. Thus the overall sedimentary system evolved from dominant alluvial-fluvial to dominant lacustrine carbonate environments through time. These facts, along with calcrete development in Units 1 and 2, indicate increasing precipitation and probably the passage to a hydrologically-closed lake basin through time. The Nigüella fault played as a normal fault at the early Jurassic and during the Cenozoic compression it promoted the formation of a hanging-wall syncline basin through buttressing of the NE block against the fault. This scenario conditioned the distribution and extent of the Miocene lithofacies through space and time, and the location of depocentres. Decreasing tectonic activity through the studied interval favoured fluvial incision, capture of the Mesozoic aquifer, and then outflow of ground water rich in Ca2+ and HCO-3, thus favouring widespread carbonate deposition, and finally the expansion of the lake area.

Downloads

Download data is not yet available.

References

Allen, J.R. (1982a). Sedimentary structures: their character and physical basis, volume I. Developments in Sedimentology 30A, Elsevier, Amsterdam, 593 pp.

Allen, J.R. (1982b). Sedimentary structures: their character and physical basis, volume II. Developments in Sedimentology 30B, Elsevier, Amsterdam, 663 pp.

Alonso-Zarza, A.M. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews, 60: 3-4, 261-298. https://doi.org/10.1016/S0012-8252(02)00106-X

Alonso-Zarza, A.M. & Arenas, C. (2004). Cenozoic calcretes from the Teruel Graben, Spain: microstructure, stable isotope geochemistry and environmental significance. Sedimentary Geology, 167: 91-108. https://doi.org/10.1016/j.sedgeo.2004.02.001

Aragonés Valls, E.; Hernández Samaniego, A.; Ramírez del Pozo, J. & Aguilar-Tomás, M.J. (1978). Mapa Geológico de España, E. 1: 50.000. Hoja nº 410 (La Almunia de Doña Godina). Instituto Geológico y Minero de España. Servicio de publicaciones - Ministerio de Industria y Energía, Madrid, 40 pp.

Arenas, C. (1993). Sedimentología y paleogeografía del Terciario del margen pirenaico y sector central de la Cuenca del Ebro (zona aragonesa occidental). Tesis Doctoral, Universidad de Zaragoza, 858 pp.

Arenas, C.; Pardo, G.; González, A. & Villena, J. (1989). El sistema aluvial de Cobatillas (Teruel): análisis de facies y evolución del estilo fluvial. Revista de la Sociedad Geológica de España 2: 41-54.

Arenas, C. & Pardo, G. (1999). Latest Oligocene-Late Miocene lacustrine systems of the north-central part of the Ebro Basin (Spain): sedimentary facies model and palaeogeographic synthesis. Palaeogeography, palaeoclimatology, palaeoecology, 151: 127- 148. https://doi.org/10.1016/S0031-0182(99)00025-5

Arenas, C.; Gutiérrez, F.; Osácar, C. & Sancho, C. (2000). Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro depresión, NE spain. Sedimentology, 47: 883-909. https://doi.org/10.1046/j.1365-3091.2000.00329.x

Arenas, C.; Cabrera, L. & Ramos, E. (2007). Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sedimentary Geology, 197: 1-27. https://doi.org/10.1016/j.sedgeo.2006.08.009

Arenas-Abad, C.; Vázquez-Urbez, M.; Pardo-Tirapu, G. & Sancho-Marcén, C. (2010). Fluvial and associated carbonate deposits. In: Carbonates in continental settings (Alonso-Zarza, A.M. & Tanner, L.H., Eds.), Developments in Sedimentology, 61: 133-175. https://doi.org/10.1016/S0070-4571(09)06103-2

Armenteros, I.; Daley, B. & García, E. (1997). Lacustrine and palustrine facies in the Bembridge Limestone (late Eocene, Hampshire Basin) of the Isle of Wight, southern England, Palaeogeography, Palaeoclimatology, Palaeoecology, 128: 111-132. https://doi.org/10.1016/S0031-0182(96)00108-3

Arp, G.; Reimer, A. & Reitner, J. (2001). Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292(5522): 1701-1704. https://doi.org/10.1126/science.1057204 PMid:11387471

Ashley, G.M. (2002). Glaciolacustrine environments. In: Modern and Past Glacial Environments. (Menzies, J., Ed.), Butterworth-Heinemann, Oxford, 335-359. https://doi.org/10.1016/B978-075064226-2/50014-3

Astibia, H.; López-Martínez, N.; Elorza, J. & Vicens, E. (2012). Increasing size and abundance of microbialites (oncoids) in connection with the K/T boundary in nonmarine environments in the South Central Pyrenees. Geologica Acta, 10: 209-226.

Butler, R. W. H. (1989). The influence of pre-existing basin structure on thrust system evolution in the western Alps. In: Inversion Tectonics (Cooper M.A. & Williams, G.D., Eds.). Special Publication of the Geological Society, London, 44: 105-122. https://doi.org/10.1144/GSL.SP.1989.044.01.07

Cabrera, L; Cabrera, M.; Gorchs, R. & de las Heras, F.X. (2002). Lacustrine basin dynamics and organosulphur compound origin in a carbonate-rich lacustrine system (Late Oligocene Mequinenza Formation, SE Ebro Basin, NE Spain). Sedimentary Geology, 148: 289-317. https://doi.org/10.1016/S0037-0738(01)00223-8

Cabrera, L.; Arbués, P.; Cuevas, J.L.; Garcés, M.; López-Blanco, M.; Marzo, M. & Valero, L. (2011). Integrated analysis of the depositional fill in evolving -marine to continental- forelands: Advances in the easterna Ebro basin (Eocene-Early Miocene, NE Spain). In: Pre-Meeting Field Trips Guidebook (Arenas, C.; Pomar, L. & Colombo, F., Eds.), 28th IAS Meeting, Sociedad Geológica de España, Geo-Guías, 7: 151-198.

Cohen, A.S.; Talbot, M.R.; Awramick, S.M.; Dettman, D.L. & Abell, P. (1997). Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geological Society of America Bulletin, 109: 444-460. https://doi.org/10.1130/0016-7606(1997)109<0444:LLAPHO>2.3.CO;2

Dunham, R.J. (1962). Classification of Carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ham, W.E. Ed.), Memories of the American Association of Petroleum Geologists, 1, Tulsa, 108-121.

Embry, A.F. & Klovan, J.E. (1971): A late Devonian reef tract on northeastern Banks Island, NW Territories. Bulletin of Canadian Petroleum Geology, 19: 730-781.

Ezquerro, L. (2017). El sector norte de la cuenta neógena de Teruel: tectónica, clima y sedimentación. PhD Thesis, Universidad de Zaragoza, 494 pp.

Fielding, C.R.; Lagarry, H.E.; Lagarry, L.A.; Bailey, B.E., & Swinehart, J.B. (2007). Sedimentology of the Whiteclay Gravel Beds (Ogallala Group) in northwestern Nebraska, USA: structurally controlled drainage promoted by early Miocene uplift of the Black Hills Dome. Sedimentary Geology, 202: 58-71. https://doi.org/10.1016/j.sedgeo.2006.12.009

Gabaldón, V. (Dir.); Lendínez, A.; Ferreiro, E.; Ruiz, V.; López de Alda, F.; Valverde, M.; Lago San José, M.; Meléndez, A.; Pardo, G.; Ardevol, L.; Villena, J.; Pérez, A.; González, A.; Hernández, A.; Álvaro, M.; Leal, M.C.; Aguilar Tomás, M.; Gómez, J.J. & Carls P. (1991). Mapa Geológico de España, 1:200,000, sheet 40 (Daroca). Instituto Tecnológico y GeoMinero de España. Servicio de Publicaciones, Madrid, 239 pp.

Gierlowski-Kordesch, E.H. (2010). Lacustrine carbonates. In: Carbonates in continental settings (Alonso-Zarza, A.M. & Tanner, L.H., Eds.), Developments in Sedimentology, 61: 1-101. https://doi.org/10.1016/S0070-4571(09)06101-9

Goy, A.; Gómez, J.J., & Yébenes, A. (1976). El Jurásico de la Cordillera Ibérica (mitad norte): I. Unidades litoestratigráficas. Estudios Geológicos 32: 391-423.

Hernández Gómez, J.M. (2000). Sedimentología, paleogeografía y relaciones tectónica/sedimentación de los sistemas fluviales, aluviales y palustres de la cuenca rift de Aguilar (Grupo Campo, Jurásico superior-Cretácico inferior de Palencia, Burgos y Cantabria). PhD Thesis, Universidad del País Vasco, 324 pp.

Hernández-Samaniego, A.; Aragonés, E.; Ramírez, J. & Aguilar, T. (1978). Mapa Geológico de España, 1:50,000. Sheet 409 (Calatayud). Instituto Geológico y Minero de España. Servicio de Publicaciones - Ministerio de Industria y Energía, Madrid, 44 pp.

Kumar, R.; Suresh, N.; Sangode, S.J. & Kumaravel, V. (2007). Evolution of the Quaternary alluvial fan system in the Himalayan foreland basin: implications for tectonic and climatic decoupling. Quaternary International, 159: 6-20. https://doi.org/10.1016/j.quaint.2006.08.010

Leinfelder, R.R. & Hartkopf-Fröder, C. (1990). In situ accretion mechanism of convavo-convex lacustrine oncoids ("swallow nests") from the Oligocene of the Mainz Basin, Rhineland, Fluvial Research Group. Sedimentology, 37: 287-301. https://doi.org/10.1111/j.1365-3091.1990.tb00960.x

López-Gómez, J. & Arche, A. (1997). The Upper Permian Boniches Conglomerates Formation: evolution from alluvial fan to fluvial system environments and accompanying tectonic and climatic controls in the southeast Iberian Ranges, central Spain. Sedimentary Geology, 114: 267-294. https://doi.org/10.1016/S0037-0738(97)00062-6

Meléndez, N. & Gómez-Fernández, J.C. (2000). Continental deposits of the Eastern Cameros Basin (Northern Spain) during Tithonian-Berriasian time. In: Lake Basins Through Space and Time (Gierlowski-Kordesch, E.H. & Kelts, K.R., Eds), American Association of Petroleum Geologists, Studies in Geology, 46: 263-278.

Miall, A.D. (1977). A review of the braided river depositional environment. Earth Science Reviews, 13: 1-62. https://doi.org/10.1016/0012-8252(77)90055-1

Miall, A.D. (1978). Lithofacies types and vertical profile models in braided river deposits: a summary. In: Fluvial Sedimentology. 5. (Miall, A.D., Ed.). Canadian Society of Petroleum Geologists Memoir, 597-604.

Miall, A.D. (2006). The geology of fluvial deposits. Springer-Verlag Berlin Heidelberg, New York, 441 pp. https://doi.org/10.1007/978-3-662-03237-4

O'Dea, M. G. & Lister, G. S. (1995). The role of ductility contrast and basement architecture in the structural evolution of the Crystal Creek block, Mount Isa Inlier, NW Queensland, Australia. Journal of Structural Geology, 17 (7): 949-960. https://doi.org/10.1016/0191-8141(94)00117-I

Olivé Davó, A.; del Olmo, P.; Portero, J.M.; Carls, P.; Sdzuy, K.; Collande, C.V. Kolb, S.; Teyssen, T.; Gutiérrez, M.; Puidgdefábregas, C.; Giner, J.; Portero, J.M.; Aguilar, M.J.; Leal, M.C.; Goy, A.; Coma, M.J.; Adrover, R. & Gabaldón, V. (Dir.) (1983). Mapa Geológico de España, Sheet 438 (Paniza). 1:50,000. Instituto Geológico y Minero de España. Servicio de publicaciones - Ministerio de Industria y Energía, Madrid, 80 pp.

Olsen, P. E. (1990) Tectonic, climatic, and biotic modulation of lacustrine ecosystems-examples from Newark supergroup of eastern North America, in B. J. Katz, ed., Lacustrine Basin Exploration, American Association of Petroleum Geologists, Memoir 50: 209-224.

Ordóñez, S. & García del Cura, M.A. (1983). Recent and Tertiary fluvial carbonates in Central Spain. In: Ancient and Modern Fluvial Systems (Collinson, J.D. & Lewin,J.), International Association of Sedimentologists Special Publication, 6: 485-497.

Pedley, H.M. (1990). Classification and environmental models of cool freshwater tufas. Sedimentary Geology, 68(1-2): 143-154. https://doi.org/10.1016/0037-0738(90)90124-C

Pedley, M. (2009). Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology, 56: 221-246. https://doi.org/10.1111/j.1365-3091.2008.01012.x

Pentecost, A. (2005). Travertine. Springer Science & Business Media. 445 pp.

Pettijohn, F. P.; Potter, P. E. & Siever, R. (1973). Sand and sandstones. Springer-Verlag, New York-Heidelberg-Berlin, 618 pp. https://doi.org/10.1007/978-1-4615-9974-6

Platt, N.H. (1989). Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 36: 665-684. https://doi.org/10.1111/j.1365-3091.1989.tb02092.x

Porter, R.J. & Gallois, R.W. (2008). Identifying fluvio-lacustrine intervals in thick playa-lake successions: an integrated sedimentology and ichnology of arenaceous members in the mid-Late Triassic Mercia Mudstone Group of south-west England UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 270: 381-398. https://doi.org/10.1016/j.palaeo.2008.07.020

Ramírez del Pozo, J.; Aguilar Tomás, M.; del Olmo Zamora, P.; Aragonés Valls, E. & Hernández Samaniego, A. (1978). Mapa geológico de España, 1:50,000, Sheet 381 (Illueca). Instituto Geológico y Minero de España. Servicio de publicaciones - Ministerio de Industria y Energía, Madrid, 39 pp.

Riding, R. (1991a). Classification of Microbial Carbonates. In: Calcareous Algae and Stromatolites (Riding, R., Ed.). Springer-Verlag, Berlin, 21-51. https://doi.org/10.1007/978-3-642-52335-9_2

Riding R. (1991b). Calcified Cyanobacteria. In: Calcareous Algae and Stromatolites (Riding, R., Ed.). Springer-Verlag, Berlin, 55-87. https://doi.org/10.1007/978-3-642-52335-9_3

Robador Moreno, A.; Hernández Samaniego, A.; Léndinez González, A.; Gonzalo Gutiérrez, R.; Ramajo Moreno, A.; Cabra Gil, P. & Pérez García, A. (2006). Mapa geológico de España, 1:50,000, Sheet 382 (Épila). Instituto Geológico y Minero de España. Servicio de Publicaciones - Ministerio de Industria y Energía, Madrid, 163 pp.

Sacristán-Horcajada, S.; Arribas, M.E. & Mas, R. (2016). Pedogenetic calcretes in early syn-rift alluvial systems (Upper Jurassic, West Cameros Basin), northern Spain. Journal of Sedimentary Research, 86: 268-286. https://doi.org/10.2110/jsr.2016.30

San Román, J. & Aurell, M. (1992). Palaeogeographical significance of the Triassic-Jurassic unconformity in the north Iberian basin (Sierra del Moncayo, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 99: 101-117. https://doi.org/10.1016/0031-0182(92)90009-T

Santos-Bueno, N. (2015). Estratigrafía y tectónica del Terciario en el sector Nigüella-Mesones de Isuela (Zaragoza). Trabajo Fin de Grado, Universidad de Zaragoza, 39 pp.

Sanz Rubio, E. (1999). Análisis de los sistemas deposicionales carbonáticos y evaporíticos del Neógeno de la cuenca de Calatayud. PhD Thesis, Universidad Complutense de Madrid, 579 pp.

Shukla, U.K. (2009). Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain, India. International Journal of Earth Sciences, 98: 443-459. https://doi.org/10.1007/s00531-007-0261-4

Simón, J.L. (2007). Superposed buckle folding in the eastern Iberian Chain, Spain. Journal of Structural Geology, 26: 1447-1464. https://doi.org/10.1016/j.jsg.2003.11.026

Vázquez-Urbez, M. (2008). Caracterización y significado ambiental de depósitos tobáceos neógenos en la Cuenca del Ebro. Comparación con ambientes cuaternarios (PhD Thesis, Universidad de Zaragoza). 542 pp.

Vázquez-Urbez, M.; Arenas, C. & Pardo, G. (2012). A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): The Quaternary Piedra and Mesa valleys. Sedimentology, 59: 502-526. https://doi.org/10.1111/j.1365-3091.2011.01262.x

Vázquez-Urbez, M.; Arenas, C.; Pardo, G. & Pérez-Rivarés, J. (2013). The effect of drainage reorganization and climate on the sedimentologic evolution of intermontane lake systems: The final fill stage of the Tertiary Ebro Basin (Spain). Journal of Sedimentary Research, 83(8): 562-590. https://doi.org/10.2110/jsr.2013.47

Vera, J. A. (Ed.). (2004). Geología de España. SGE-IGME, Madrid, 890 pp.

Wright, V.P. & Tucker, M.E. (1991). Calcretes. The international association of Sedimentologists. Blackwell Scientific Publications, Oxford, Reprint Series 2, 380 pp. https://doi.org/10.1002/9781444304497

Zamarreño, I.; Anadón, P. & Utrilla, R. (1997). Sedimentology and isotopic composition of Upper Palaeocene to Eocene non-marine stromatolites, eastern Ebro Basin, NE Spain. Sedimentology, 44: 159-176 . https://doi.org/10.1111/j.1365-3091.1997.tb00430.x

Published

2019-06-30

How to Cite

Santos Bueno, N., Arenas Abad, C., & Gil Imaz, A. (2019). Miocene syntectonic fluvial and lacustrine sedimentation linked to a fault-parallel buttress syncline in the Nigüella sector (NW Iberian Range). Estudios Geológicos, 75(1), e089. https://doi.org/10.3989/egeol.43377.507

Issue

Section

Articles

Most read articles by the same author(s)