Evaluación de la erosión de riberas de ríos en regiones semiáridas mediante datos de teledetección y SIG: caso del río Rdat (Marrakech, Marruecos)

Autores/as

DOI:

https://doi.org/10.3989/egeol.43217.493

Palabras clave:

Evaluación de alturas de las orillas, clima semiárido, Marrakech, Marruecos

Resumen


La erosión de riberas es el proceso de desprendimiento de los granos materiales que constituyen las orillas de los ríos bajo el efecto del agua. En regiones semiáridas, las inundaciones se caracterizan por su irregularidad. Este fenómeno tiene varios impactos ambientales en el ecosistema fluvial, por lo que es esencial realizar estudios al respecto. En este contexto, el propósito de este trabajo es proporcionar un enfoque sencillo que permita estimar las alturas de los bancos con el fin de evaluar la tasa de contribución de la erosión de riberas a la carga sedimentaria de los ríos durante los últimos 32 años y sus consecuencias en el sistema fluvial. La base de datos considerada son las imágenes Landsat de 1984 a 2016 y los datos de elevación ALOS PALSAR de la cuenca del Rdat, que se encuentra en el sureste de Marrakech en Marruecos, así como pruebas de campo. Estos datos se procesaron utilizando herramientas de teledetección y SIG y luego se combinaron para mejorar los resultados. Los resultados obtenidos muestran que la ribera de la cuenca del Rdat es, de forma significativa, inestable y contribuye al suministro de sedimentos al río, con una tasa de retroceso en la ribera de 5 m/yr y una tasa de erosión volumétrica anual de 286,82 m3/yr en promedio. Los sedimentos liberados en el río, cuando se erosionan desde las orillas, pueden ser el origen de sedimentos contaminados (fósforo, mercurio...), así como la causa principal del relleno del cauce del río.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R. & Parker, G. (2011). Large shift in source of fine sediment in the Upper Mississippi River. Environmental Science and Technology, 45: 88048810. https://doi.org/10.1021/es2019109

Carroll, R.W.H.; Warwick, J.J.; James, A.I. & Miller, J.R. (2004). Modeling erosion and overbank deposition during extreme flood conditions on the Carson River, Nevada. Journal of Hydrology, 297: 1–21. https://doi.org/10.1016/j.jhydrol.2004.04.012

Darby, S.E.; Alabyan, A.M. & Van de Wiel, M.J. (2002). Numerical simulation of bank erosion and channel migration in meandering rivers, Water Resources Research, 32(9): 1163. https://doi.org/10.1029/2001WR000602

Downs, P.W & Simon, A. (2001). Fluvial geomorphological analysis of the recruitment of large woody debris in the Yalobusha river network, Central Mississippi, USA. Geomorphology, 37: 65–91. https://doi.org/10.1016/S0169-555X(00)00063-5

Downward, S. R. (1995). Information from topographic survey. In: Changing River Channels (Gurnell, A.M. & Petts, G., Eds.), Wiley, New York, 323.

Evans, D.J.; Bison, C.E. & Rossell, R.S. (2006). Sediment loads and sources in heavily modified Irish catchments: a move towards informed management strategies. Geomorphology, 79: 93–113. https://doi.org/10.1016/j.geomorph.2005.09.018

Gurnell, A.M.; Downward, S. R. & Jones, R. (1994). Channel planform change on the River Dee meanders 1876–1992. Regulated Rivers - Research & Management, 9: 187–204. https://doi.org/10.1002/rrr.3450090402

Hooke, J.M. (1979). An analysis of the processes of river bank erosion. Journal of Hydrology, 42: 39–62. https://doi.org/10.1016/0022-1694(79)90005-2

Jensen J.R. (1983). Urban/suburban land use analysis. In: Manual of Remote Sensing (Jensen, J.R., Ed.), American Society of Photogrammetry, Falls Church,1571-1666.

Kessler, A.C.; Gupta, S.C.; Dolliver, H.A.S. & Thomas, D.P. (2012). LIDAR quantification of bank erosion in Blue Earth County, Minnesota. Journal of Environmental Quality, 41: 197–207. https://doi.org/10.2134/jeq2011.0181 PMid:22218188

Kessler, A.C.; Gupta, S.C. & Brown, M.K. (2013). Assessment of river bank erosion in Southern Minnesota Rivers post European settlement. Geomorphology, 201: 312–322. https://doi.org/10.1016/j.geomorph.2013.07.006

Krishna Prasad, S.; Indulekha, K.P. & Balan, K. (2015). Analysis of groyne placement on minimizing river bank erosion. Procedia Technology 24: 47–53. https://doi.org/10.1016/j.protcy.2016.05.008

Lawler, D.M. (1986). River bank erosion and the influence of frost: a statistical examination. Transactions of the Institute of British Geographers, 11(2): 227–242. https://doi.org/10.2307/622008 https://doi.org/10.2307/622008

Lawler, D.M. (1987). Bank erosion and frost action: an example from South Wales. In: International Geomorphology 1986 - Proceedings of the First International Conference on Geomorphology (Gardiner, V., Ed.), Wiley, Chichester, 575–590.

Lawler, D.M. (1993). The measurement of river bank erosion and lateral channel change: a review. Earth Surface Processes and Landforms, 18: 777–821. https://doi.org/10.1002/esp.3290180905

Leopold, L.B. (1973). River channel change with time: an example. Geological Society of America Bulletin, 84: 1845–1860. https://doi.org/10.1130/0016-7606(1973)84<1845:RCCWTA>2.0.CO;2

Lewin, J. (1976). Initiation of bed forms and meanders in coarse-grained sediment. Geological Society of America Bulletin, 87: 281–285. https://doi.org/10.1130/0016-7606(1976)87<281:IOBFAM>2.0.CO;2

Lewin, J. & Manton, M.M.M. (1975). Welsh floodplain studies: the nature of floodplain geometry. Journal of Hydrology, 25: 37–50. https://doi.org/10.1016/0022-1694(75)90037-2

Missenard, Y.; Taki, Z.; Frizon de Lamotte, D.; Benammi, M.; Hafid, M.; Leturmy, P. & Sébrier, M. (2007). Tectonic styles in the Marrakesh High Atlas (Morocco): The role of heritage and mechanical stratigraphy. Journal of African Earth Sciences, 48: 247–266. https://doi.org/10.1016/j.jafrearsci.2007.03.007

Petts, G. E. (1989). Historical analysis of fluvial hydrosystems. In: Historical Change in Large Alluvial Rivers (Petts, G.E.; Moller, H. & Roux, A.L. Eds.). Wiley, New York, 1–18.

Piégay, H.; Darby, S.E.; Mosselman, E. & Surian, N. (2005). A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Research and Applications, 21: 773–789. https://doi.org/10.1002/rra.881

Piégay, H.; Cuaz, M.; Javelle, E. & Mandier, P. (1997). A new approach to bank erosion management: the case of the Galaure River, France. Regulated Rivers: Research and Management, 13: 433–448. https://doi.org/10.1002/(SICI)1099-1646(199709/10)13:5<433::AID-RRR467>3.0.CO;2-L

Rhoades. E.L.; O'Neal, M.A. & Pizzuto, J.E. (2009). Quantifying bank erosion on the South River from 1937 to 2005 and its importance in assessing Hg contamination. Applied Geography, 29: 125–134. https://doi.org/10.1016/j.apgeog.2008.08.005

Roslan Z.A.; Mohd S.S. & Naimah Y. (2017). Erosion risk assessment: A case study of the Langat River bank in Malaysia. International Soil and Water Conservation Research, 5: 26–35. https://doi.org/10.1016/j.iswcr.2017.01.002

Saidi, M.E.M.; Boukrim, S.; Fniguire, F. & Ramromi, A. (2012). Les écoulements superficiels sur le Haut Atlas de Marrakech cas des débits extrêmes. LARHYSS Journal, 10: 75–90.

Schumm, S.A. & Lichty, R.W. (1963). Channel widening and floodplain construction along Cimarron River, in south-western Kansas. US Geological Survey Professional Paper, 352-D.

Thomas, D.P.; Gupta, S.C.; Bauer, M.E. & Kirchoff, C.E. (2005). Airborne laser scanning for riverbank erosion assessment. Remote Sensing of Environment, 95: 493–501. https://doi.org/10.1016/j.rse.2005.01.012

Thorne, C.R. & Lewin, J. (1979). Bank processes, bed material movement and planform development in a meandering river. In: Adjustments of the Fluvial System (Rhodes, D.D. & Williams, G.P., Eds.), Kendall/ Hunt, Dubuque,117–137.

Twidale, C.R. (1964). Erosion of an alluvial bank at Birdwood, South Australia. Zeitschrift fur Geomorphologie, 8: 189–211.

Waters, T.F. (1995). Sediment in Streams—Sources, Biological Effects and Control. American Fisheries Society Monograph 7, Bethesda, Maryland, 251 pp.

Wilson, C.G.; Papanicolaou, A.N. & Denn, K.D. (2012). Quantifying and partitioning fine sediment loads in an intensively agricultural headwater system. Journal of Soils and Sediments, 12(6): 966–981. https://doi.org/10.1007/s11368-012-0504-2

Wilson, G.V.; Periketi, R.; Fox, G.A.; Dabney, S.; Shields, D. & Cullum, R.F. (2007). Soil properties controlling seepage erosion contributions to river bank failure. Earth Surface Processes and Landforms, 32: 447– 459. https://doi.org/10.1002/esp.1405

Winterbottom, S.J. & Gilvear, D.J. (2000). A GIS-based approach to mapping probabilities of river bank erosion: regulated River Tummel, Scotland. Regulated Rivers – Research & Management, 16: 127–140. https://doi.org/10.1002/(SICI)1099-1646(200003/04)16:2<127::AID-RRR573>3.0.CO;2-Q

Wolman, M.G. (1959). Factors influencing erosion of a cohesive river bank. American Journal of Science, 257: 204–216. https://doi.org/10.2475/ajs.257.3.204

Publicado

2018-12-30

Cómo citar

Ait Mlouk, M., Algouti, A., Algouti, A., & Ourhzif, Z. (2018). Evaluación de la erosión de riberas de ríos en regiones semiáridas mediante datos de teledetección y SIG: caso del río Rdat (Marrakech, Marruecos). Estudios Geológicos, 74(2), e081. https://doi.org/10.3989/egeol.43217.493

Número

Sección

Artículos