Mapping groundwater vulnerability to nitrate pollution from diffuse sources in the Ebro river basin (N.E. Spain)

Authors

DOI:

https://doi.org/10.3989/egeol.43868.586

Keywords:

LU–IV procedure, Geographic Information Systems (GIS), diffuse pollution, nitrate vulnerable zones (NVZ)

Abstract


Nitrate pollution from diffuse sources is one of the main causes of groundwater quality deterioration on a global scale. Recent research suggests the need to minimize uncertainty in assessing groundwater vulnerability through the development of a robust methodology for the evaluation of vulnerability, using a source–pathway–receptor approach at basin scale. The LU–IV procedure (Arauzo, 2017) was devised for mapping intrinsic groundwater vulnerability (risks associated with the physical environment) and specific vulnerability to nitrate pollution (risks associated with land use in areas that are intrinsically vulnerable), with the final goal of improving the nitrate vulnerable zones (NVZ) delineation. This methodology uses simple and readily available parameters combined in a GIS environment and allows us to accurately assess groundwater vulnerability in the entire catchment area that drains water (potentially polluted by nitrate) into a receptor aquifer. The application of the LU–IV procedure to the river Ebro basin (N.E. Spain) revealed a surface area of 18,757 km2 under high to extreme vulnerability to nitrate pollution, so that the affected territories could potentially be designated as NVZ. These results differ from the 9.796 km2 designated as NVZ by the Spanish regional administrations with competences in NVZ designations in the Ebro basin. Although the officially designated NVZ are consistent with the results of this research, the application of the new procedure allowed us to identify 50% more surface area that could be classified as NVZ. Alluvial areas showed the highest degree of vulnerability (both intrinsic and specific) affecting most of their territory, which suggests the need to propose an integral protection of all alluvial surfaces, not only of the Ebro basin, but also at national and European level.

Downloads

Download data is not yet available.

References

Aller, L.; Bennet, T.; Lehr, J.H. & Petty, R.J. (1987). DRASTIC. A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. U.S. Environmental Protection Agency EPA/600/2-87-035, Oklahoma, 622 pp.

Arauzo, M.; Valladolid. M. & Martínez-Bastida, J.J. (2011). Spatio-temporal dynamics of nitrogen in river-alluvial aquifer systems affected by diffuse pollution from agricultural sources: implications for the implementation of the Nitrate Directive. Journal of Hydrology, 411: 155-168. https://doi.org/10.1016/j.jhydrol.2011.10.004

Arauzo, M. & Valladolid, M. (2013). Drainage and N-leaching in alluvial soils under agricultural land uses: Implications for the implementation of the EU Nitrates Directive. Agriculture, Ecosystems & Environment, 179: 94-107. https://doi.org/10.1016/j.agee.2013.07.013

Arauzo, M. (2017). Vulnerability of groundwater resources to nitrate pollution: a simple and effective procedure for delimiting Nitrate Vulnerable Zones. Science of the Total Environment, 575: 799-812. https://doi.org/10.1016/j.scitotenv.2016.09.139 PMid:27707576

Arauzo, M.; García, G. & Valladolid, M. (2019). Assessment of the risks of N-loss to groundwater from data on N-balance surplus in Spanish crops: An empirical basis to identify Nitrate Vulnerable Zones. Science of the Total Environment, 696: 133713. https://doi.org/10.1016/j.scitotenv.2019.133713 PMid:31461691

Arqued, V.M. (2018). Es probable que se amplíen las zonas declaradas como vulnerables por la contaminación con nitratos agrícolas. Tierras, 268: 120-122.

Botey, R.; Guijarro, J.A. & Jiménez, A. (2013). Valores normales de precipitación mensual 1981-2010. 55 págs. Dirección de Producción e Infraestructuras, Agencia Estatal de Meteorología (AEMET), Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, 55 pp.

Commission of the European Communities (2007). Report from the Commission to the Council and the European Parliament on implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources for the period 2000-2003 {SEC (2007) 339}. /* COM/2007/0120 final*/, Brussels.

Confederación Hidrográfica del Ebro (2015). Mapa Geológico de España [mapas en formato digital] 1:50.000. Series MAGNA, Instituto Geológico y Minero de España. Madrid. http://iber.chebro.es/geoportal/ (acceso el 29 de abril de 2015).

Confederación Hidrográfica del Ebro (2019a). Aguas afectadas por nitratos de origen agrario (2012-2015) http://www.chebro.es/contenido.visualizar.do?idC ontenido=19441&idMenu=3811/ (acceso el 2 de diciembre 2019).

Confederación Hidrográfica del Ebro (2019b). Inicio SITEbro. Geodatos. Descarga de datos cartográficos en formato de fichero agrupados por temáticas; Masas de Agua Subterránea; Red Fluvial; Puntos Piezométricos; Mapa Geológico; Zonas Vulnerables. http://iber.chebro.es/geoportal/index.htm (acceso el 2 de diciembre 2019).

Council of the European Communities (1991). Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. 12 December 1991. Official Journal of the European Union L 375, 31/12/1991, Brussels.

Economic and Social Council of the United Nations (2018). Special edition: progress towards the Sustainable Development Goals. Report of the Secretary-General. Chapter II: Where we are in the achievement of the Sustainable Development. Goal 6, Ensure availability and sustainable management of water and sanitation for all. https://undocs.org/E/2019/68 (acceso el 29 julio de 2019).

European Commission (2013). Report from the Commission to the Council and the European parliament on implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2008-2011. 13 pp. Commission Staff Working Document, Brussels.

Foster, S.S.D. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Vulnerability of Soil and Groundwater to Pollution (Duijvanbooden, W. Van & Waegeningh, H.G. Van, Eds.), Proceedings and Information No. 38, TNO Committee on Hydrological Research, the Netherlands, 69-86.

IGN (2015). Sistema de Información de Ocupación del Suelo en España. Documento Técnico SIOSE 2011. Versión 1.1. Instituto Geográfico Nacional, Madrid.

IGN (2018). Modelo Digital del Terreno - MDT25 [mapas en formato ráster de 25m de resolución]. Instituto Geográfico Nacional, Madrid. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp (acceso el 20 de abril de 2018).

Kumar, P.; Bansod, B.K.S.; Debnath, S.K.; Kumar T., P. & Ghanshyam, C. (2015). Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation. Environmental Impact Assessment Review, 51: 38-49. https://doi.org/10.1016/j.eiar.2015.02.001

Machiwal, D.; Jha, M.K.; Singh, V.P. & Mohan, C. (2018). Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews, 185: 901-927. https://doi.org/10.1016/j.earscirev.2018.08.009

MAGRAMA (2005). Caracterización de las masas de agua subterránea de las cuencas intercomunitarias. Tomo V. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid.

MAGRAMA (2013). Balance del nitrógeno en la agricultura española, año 2011. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Secretaría General Agricultura y Alimentación, Dirección General de Producciones y Mercados Agrarios, Madrid.

MAGRAMA (2015a). Balance del nitrógeno en la agricultura española, año 2013. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Secretaría General Agricultura y Alimentación, Dirección General de Producciones y Mercados Agrarios, Madrid.

MAGRAMA (2015b). Informe sobre regadíos en España. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Secretaría General Técnica, Subdirección General de Estadística, Madrid.

MAPAMA (2016). Balance del nitrógeno en la agricultura española, año 2014. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Secretaría General Agricultura y Alimentación, Dirección General de Producciones y Mercados Agrarios, Madrid.

MAPAMA (2017). Balance del nitrógeno en la agricultura española, año 2015. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Secretaría General Agricultura y Alimentación, Dirección General de Producciones y Mercados Agrarios, Madrid.

MARM (2009). Mapa de Cultivos y Aprovechamientos de España 2000-09 [mapas en formato digital] 1:50.000. Ministerio de Medio Ambiente, Medio Rural y Marino de España, Madrid.

SIOSE (2011). SIOSE 2011 Sistema de Información sobre Ocupación del Suelo de España [mapas en formato digital] 1:25.000. ©Instituto Geográfico Nacional, Madrid. http://centrodedescargas.cnig.es/CentroDescargas/busquedaSerie.do?codSerie=SIOSE (acceso el 13 de octubre de 2018).

Worrall, F.; Spencer, E. & Burt, T.P. (2009). The effectiveness of nitrate vulnerable zones form limiting surface water nitrate concentrations. Journal of Hydrology, 370, 21-28. https://doi.org/10.1016/j.jhydrol.2009.02.036

Published

2020-09-25

How to Cite

Arauzo, M., Valladolid, M., & García, G. (2020). Mapping groundwater vulnerability to nitrate pollution from diffuse sources in the Ebro river basin (N.E. Spain). Estudios Geológicos, 76(2), e132. https://doi.org/10.3989/egeol.43868.586

Issue

Section

Articles