CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)
DOI:
https://doi.org/10.3989/egeol.41758.330Keywords:
benthic foraminiferal extinction, Paleocene-Eocene, warming, ocean acidificationAbstract
The largest extinction of deep-sea benthic foraminifera in the Cenozoic occurred during the Paleocene-Eocene Thermal Maximum event (PETM, ~55.8 Ma). Much has been speculated about the causes of such extinction, and proposed mechanisms include changes in productivity and/or oxygenation of bottom waters, metabolic changes and in the composition of the food supply to the seafloor, or the ocean acidification related to the massive input of isotopically light carbon into the ocean-atmosphere system, among others. Here we analyse ocean acidification as a potential triggering mechanism of the extinctions. The early Eocene at the Zumaya section (Basque-Cantabrian Basin) is marked by a 4 m-thick interval with a very low CaCO3 content. In order to analyse whether CaCO3 dissolution had a direct effect on the extinctions across the PETM, we car-ried out dissolution experiments on various species of agglutinated benthic foraminifera from Zumaya. In general, agglutinated species that do not disappear in the interval of most intense dissolution at Zumaya were not -or only slightly- affected by our dissolution experiments, since they do not have calcareous particles or cement. However, some species that went extinct or locally disappeared during the early Eocene, such as Dorothia cylindracea, Spiroplectammina spectabilis and Haplophragmoides cf. walteri, are resistant to dissolution. These results sug-gest that, in addition to ocean acidification, other factors must have contributed to the destabilization of benthic foraminiferal assemblages.
Downloads
References
Agnini, C.; Fornaciari, E.; Rio, D.; Tateo, F.; Backman, J. & Giusberti, L. (2007). Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/ Eocene boundary in the Venetian pre-Alps. Marine Micropaleontology, 63: 19–38. http://dx.doi.org/10.1016/j.marmicro.2006.10.002
Alegret, L.; Ortiz, S.; Orue-Etxebarria, X.; Bernaola, G.; Baceta, J.I.; Monechi, S.; Apellaniz, E. & Pujalte, V. (2009a). The Paleocene-Eocene Thermal Maximum: New data on microfossil turnover at Zumaia section, Spain. Palaios, 24: 318–328. http://dx.doi.org/10.2110/palo.2008.p08-057r
Alegret, L.; Ortiz, S. & Molina, E. (2009b). Extinction and recovery of benthic foraminifera across the Paleocene-Eocene Thermal Maximum at the Alamedilla section (Southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 279: 186–200. http://dx.doi.org/10.1016/j.palaeo.2009.05.009
Alegret, L.; Ortiz, S.; Arenillas, I. & Molina, E. (2010). What happens when the ocean is overheated? The foraminiferal response across the Paleocene-Eocene Thermal Maximum at Alamedilla section (Spain). Geological Society of America Bulletin, 122: 1616–1624. http://dx.doi.org/10.1130/B30055.1
Boltovskoy, E. & Boltovskoy, D. (1989). Paleocene- Pleistocene benthic foraminiferal evidence of major paleoceanographic events in the eastern South Atlantic (DSDP Site 525, Walvis Ridge). Marine Micropaleontology, 14: 283–316. http://dx.doi.org/10.1016/0377-8398(89)90015-7
Bowen, G.J.; Bralower, T.J.; Delaney, M.L.; Dickens, G.R.; Kelly, D.C.; Koch, P.L.; Kump, L.R.; Meng, J.; Sloan, L.C.; Thomas, E.; Wing, S.L. & Zachos, J.C. (2006). The Paleocene-Eocene Thermal Maximum gives insight into greenhouse gas-induced environmental and biotic change. Eos, 87: 165–169. http://dx.doi.org/10.1029/2006EO170002
Bralower, T.J. (2002). Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 17: X1-9. http://dx.doi.org/10.1029/2001pa000662
Charles, A.J.; Condon, D.J.; Harding, I.C.; Pälike, H.; Marshall, J.E.A.; Cui, Y.; Kump, L. & Croudace, I.W. (2011). Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems, 12: Q0AA17.
Crouch, E.M.; Heilmann-Clausen, H.; Brinkhuis, H.E.G.; Morgans, K.M.; Rogers, H.; Egger, B. & Schmitz, B. (2001). Global dinoflagellate event associated with the Paleocene thermal maximum. Geology, 29: 315–318. http://dx.doi.org/10.1130/0091-7613(2001)029<0315:GDEAWT>2.0.CO;2
Ellis, B.F. & Messina, A.R. (2006). Catalogue of Foraminifera. Micropaleontology Press, New York. http://www.micropress.org/em/.
Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H. & Nojiri, Y. (2011). Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences, 8: 2089–2098. http://dx.doi.org/10.5194/bg-8-2089-2011
Gibbs, S.J.; Bralower, T.J.; Bown, P.R.; Zachos, J.C. & Bybell, L.M. (2006). Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients. Geology, 34: 233–236. http://dx.doi.org/10.1130/G22381.1
Hart, M.; Pettit, L.; Wall-Palmer, D.; Smart, C.; Hall-Spencer, J.; Medina-Sanchez, A.; Prol Ledesma, R.M.; Rodolfo-Metalpa, R. & Collins, P. (2012). Investigation of the calcification response of foraminifera and pteropods to high CO2 environments in the Pleistocene, Paleogene and Cretaceous. Geophysical Research Abstracts, 14: EGU2012-9754.
Hintz, C.J.; Chandler, G.T.; Bernhard, J.M.; McCorkle, D.C.; Havach, S.M.; Blanks, J.K. & Shaw T.J. (2004). A physicochemically constrained seawater culturing system for production of benthic foraminifera. Limnology and Oceanography: Methods 2: 160–170. http://dx.doi.org/10.4319/lom.2004.2.160
Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto, T.M. Jr.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L. & Williams, B. (2012). The geological record of ocean acidification. Science, 335: 1058–1063. http://dx.doi.org/10.1126/science.1208277 PMid:22383840
John, C.M.; Bohaty, S.M.; Zachos, J.C.; Sluijs, A.; Gibss, S.; Brinkhuis, H. & Bralower, T.J. (2008). North American continental margin records of the Paleocene- Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography, 23: PA2217. http://dx.doi.org/10.1029/2007PA001465
Kaiho, K.; Morgans, H.E.G. & Okada, H. (1993). Faunal turnover of intermediate-water benthic foraminifera during the Paleogene in New Zealand. Marine Micropaleontology, 23: 51–86. http://dx.doi.org/10.1016/0377-8398(93)90053-Z
Kaminski, M.A. & Gradstein, F.M. (2005). Atlas of Paleogene cosmopolitan deep-water agglutinated foraminifera. Grzybowski Foundation Special Publication 10, Cracovia, Polonia, 597 pp.
Kelly, D.C.; Bralower, T.J. & Zachos, J.C. (1998). Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 141: 139–161. http://dx.doi.org/10.1016/S0031-0182(98)00017-0
Kennett, J.P. & Stott, L.D. (1991). Abrupt deep-sea warming palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353: 225–229. http://dx.doi.org/10.1038/353225a0
Koch, P.L.; Zachos, J.C. & Gingerich, P.D. (1992). Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature, 358: 319–322. http://dx.doi.org/10.1038/358319a0
Loeblich, A.R. Jr. & Tappan, H. (1988). Foraminifera genera and their classification. Van Nostrand Reinhold Company Inc., New York, 970 pp. http://dx.doi.org/10.1007/978-1-4899-5760-3
McIntyre-Wressnig, A.; Bernhard, J.M.; McCorkle, D.C. & Hallock, P. (2013). Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Marine Ecology Progress Series, 472: 45–60. http://dx.doi.org/10.3354/meps09918
Nguyen, T.M.P.; Petrizzo, M.R. & Speijer, R.P. (2009). Experimental dissolution of a fossil foraminiferal assemblage (Paleocene-Eocene Thermal Maximum, Dababiya, Egypt): Implications for paleoenvironmental reconstructions. Marine Micropaleontology, 73: 241–258. http://dx.doi.org/10.1016/j.marmicro.2009.10.005
Nguyen, T.M.P.; Petrizzo, M.R.; Stassen, P. & Speijer, R.P. (2011). Dissolution susceptibility of Paleocene-Eocene planktic foraminifera: Implications for palaeoceanographic reconstructions. Marine Micropaleontology, 81: 1–21. http://dx.doi.org/10.1016/j.marmicro.2011.07.001
Orue-Etxebarria, X.; Pujalte, V.; Bernaola, G.; Apellaniz, E.; Baceta, J.I.; Payros, A.; Nú-ez-Betelu, K.; Serra-Kiel, J. & Tosquella, J. (2001). Did the Late Paleocene Thermal Maximum affect the evolution of larger foraminifers?: Evidences from calcareous plankton of the Campo section (Pyrenees, Spain). Marine Micropaleontology, 41: 45–71. http://dx.doi.org/10.1016/S0377-8398(00)00052-9
Pujalte, V.; Orue-Etxebarria, X.; Schmitz, B.; Tosquella, J.; Baceta, J.I.; Payros, A.; Bernaola, G.; Caballero, F. & Apellaniz, E. (2003). Basal Ilerdian (earliest Eocene) turnover of larger foraminifera: age constraints based on calcareous plankton and δ13C isotopic profiles from new southern Pyrenean sections (Spain). En: Causes and consequences of Globally Warm Climates in the Early Paleogene (Wing, S.L.; Gingerich, P.D.; Schmitz, B. & Thomas, E., Eds.), Geological Society of America Special Paper, 369: 205–221.
Reymond, C.E.; Lloyd, A.; Kline, D.I.; Dove, S.G. & Pandolfi, J.M. (2013). Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology, 19: 291–302. http://dx.doi.org/10.1111/gcb.12035 PMid:23504740
Ries, J.B.; Cohen, A.L. & McCorkle, D.C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37: 1131–1134. http://dx.doi.org/10.1130/G30210A.1
Röhl, U.; Bralower, T.J.; Norris, R.D. & Wefer, G. (2000). New chronology for the late Paleocene thermal maximum and its environmental implications. Geology, 28: 927–930. http://dx.doi.org/10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2
Setoyama, E.; Radmacher, W.; Kaminski, M.A. & Tyszka, J. (2013). Foraminiferal and palynological biostratigraphy and biofacies from a Santonian-Campanian submarine fan system in the Vøring Basin (offshore Norway). Marine and Petroleum Geology, 43: 396–408. http://dx.doi.org/10.1016/j.marpetgeo.2012.12.007
Steineck, P.L. & Thomas, E. (1986). The latest Paleocene crisis in the deep sea: Ostracode succesion at Maud Rise, Southern Ocean. Geology, 24: 583–586. http://dx.doi.org/10.1130/0091-7613(1996)024<0583:TLPCIT>2.3.CO;2
Stoll, H.M. (2005). Limited range of interspecific vital effects in coccolith stable isotopic records during the Paleocene-Eocene thermal maximum. Paleoceanography, 20: PA1007. http://dx.doi.org/10.1029/2004PA001046
Takeda, K. & Kaiho, K. (2007). Faunal turnovers in central Pacific benthic foraminifera during the Paleocene-Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 251: 175–197. http://dx.doi.org/10.1016/j.palaeo.2007.02.026
Thomas, E. (1998). The biogeography of the late Paleocene benthic foraminiferal extinction. En: Late Paleocene-early Eocene biotic and climatic events in the marine and terrestrial records (Aubry, M.-P.; Lucas, S.G. & Berggren, W.A., Eds.), New York, Columbia University Press, 214–243.
Thomas, E. (2007). Cenozoic mass extinctions in the deep sea: what disturbs the largest habitat on Earth?. En: Large ecosystems perturbations: causes and consequences (Monechi, S.; Coccioni, R. & Rampino, M., Eds.), Geological Society of America Special Paper, 424: 1–24.
Thomas, E. (2012). Agglutinated benthic foraminifera during ocean acidification: what holds them together? En: Ninth International Workshop on Agglutinated Foraminifera (Alegret, L.; Ortiz, S. & Kaminski, M.A., Eds.), Abstract volume, 95–97.
Tjalsma, R.C. & Lohman, G.P. (1983). Paleocene-Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean. Micropaleontology Special Publication 4, 89 pp.
Vincent, E.; Gibson, J.M. & Brun, L. (1974). Paleocene and Early Eocene microfacies, benthonic foraminifera, and paleobathymetry of Deep Sea Drilling Project Sites 236 and 237, western Indian ocean. En: Initial Reports of the Deep Sea Drilling Project (Fisher, R.L.; Bunce, E.T.; et al., Eds.), Washington (U. S. Government Printing Office), 24: 859–885.
Wing, S.L.; Harrington, G.J.; Smith, F.A.; Bloch, J.I.; Boyer, D.M. & Freeman, K.H., (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310: 993–996. http://dx.doi.org/10.1126/science.1116913 PMid:16284173
Zachos, J.C.; Pagani, M.; Sloan, L.; Thomas, E. & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693. http://dx.doi.org/10.1126/science.1059412 PMid:11326091
Zachos, J.C.; Wara, M.W.; Bohaty, S.; Delaney, M.L.; Petrizzo, M.R.; Brill, A.; Bralower, T.J. & Premoli-Silva, I. (2003). A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science, 302: 1551–1554. http://dx.doi.org/10.1126/science.1090110 PMid:14576441
Zachos, J.C.; Röhl, U.; Schellenberg, S.A.; Sluijs, A.; Hodell, D.A.; Kelly, D.C.; Thomas, E.; Nicolo, M.; Raffi, I.; Lourens, L.J.; McCarren, H. & Kroon, D. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, 308: 1611–1615. http://dx.doi.org/10.1126/science.1109004 PMid:15947184
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.