Petrographic, spectral and magnetic susceptibility study of hydrothermal alteration associated with Pb-Zn-Cu-Ag-Au polymetallic deposits in the Sierra de Comechingones, Córdoba (Argentina)

Authors

DOI:

https://doi.org/10.3989/egeol.42408.403

Keywords:

hydrothermal alteration, spectral analysis, phengitic illite, magnetic susceptibility, Sierras de Córdoba

Abstract


In the metamorphic basement of the Sierra de Comechingones, the southernmost extension of Sierras de Cordoba (Argentina), it is hosted a group of polymetallic Pb-Zn-Cu-Ag-Au veins associated with hydrothermal alteration zones, which are the result of a Late Paleozoic metallogenic period. In this paper, the application of spectral analysis in the SWIR (Short-Wave Infrared) region as well as magnetic techniques, unusual in Argentina for this style of mineralization, proved to be an effective tool in the study of altered areas and also useful to establish targets for mineral prospecting and/or exploration. A sericite-quartz assemblage is the main hydrothermal alteration product of the migmatic host rocks. It is developed into narrow but continuous altered zones which follow the main direction of the mineralized structures and can reach up to 5 meters to each side of the veins. Subordinately and locally, a carbonate siderite-calcite assemblage takes place as a result of altered amphibolites, which are interspersed within the metamorphic sequence. In the reflectance spectra, the wavelength position of the Al-OH absorption feature revealed compositional variations and cation substitutions in the hydrothermal white micas, ranging from potassic (wavelengths near 2200 nm) to micas with a lower octahedral Al content (wavelengths > 2210 nm) towards phengite. These variations and the spatial distribution within the altered areas are primarily controlled by three main factors: 1) hydrothermal fluid temperature, 2) pH and/or 3) Mg-Fe/Al ratio in the fluid-rock system. The crystallinity indexes (CI) calculated from the spectral data, indicate the predominance of high crystallinity illites with a slight increase of this parameter towards the proximal zones to the mineralized veins. The illite/smectite mix-layered clays indicate a fluid temperature decrease towards the distal zones and they can be used as vectors to mineralization. Both sericite-quartz and siderite-calcite hydrothermal assemblages are frequently affected by supergene oxidation processes that led to a conspicuous precipitation of hematite-goethite within the altered areas. The oxidation state of Fe+3 in these minerals is the main cause of the decrease of the magnetic susceptibility parameter in the host rocks. With a regional perspective, these hydrothermal alteration zones characterized by a high abundance of white micas of moderate to high crystallinity (CI=1,21-3,92 and IK=0,21-0,23), compositions ranging from potassic to phengitic (Al-OH wavelengths between 2200-2215 nm) and associated with hematization zones and low magnetic susceptibility values (< 0,2 x 10-3SI), may be considered as potential targets for future prospecting and/or exploration of polymetallic veins hosted in the metamorphic environment of the Sierras Pampeanas.

Downloads

Download data is not yet available.

References

Asadi, H.H. & Hale, M. (2001). A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran. Computers & Geosciences, 27(8): 901-912. https://doi.org/10.1016/S0098-3004(00)00130-8

Auzanneau, E.; Schmidt, M.W.; Vielzeuf, D. & Connolly, J.D. (2010). Titanium in phengite: a geobarometer for high temperature eclogites. Contributions to Mineralogy and Petrology, 159(1): 1-24. https://doi.org/10.1007/s00410-009-0412-7

Barbosa Santiago, E.; Villas, R. & Castro Ocampo, R. (2013). The Tocantinzinho gold deposit, Tapajós province, state of Pará: host granite, hydrothermal alteration and mineral chemistry. Brazilian Journal of Geology, 43(1): 185-208. https://doi.org/10.5327/Z2317-48892013000100015

Bishop, B.P. & Bird, D.K. (1987). Variation in sericite compositions from fracture zones within the Coso Hot Springs geothermal system. Geochimica et Cosmochimica Acta, 51(5): 1245-1256. https://doi.org/10.1016/0016-7037(87)90216-X

Bishop, J. L.; Lane, M. D.; Dyar, M. D. & Brown, A. J. (2008). Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43(1): 35-54. https://doi.org/10.1180/claymin.2008.043.1.03

Brodtkorb, M.; Coniglio, J. & Miró, R. (2014). Yacimientos Metalíferos y Metalogenia. In: Geología y Recursos Naturales de la Provincia de Córdoba (Martino, R. & Guereschi, A., Eds.). Asociación Geológica Argentina, Córdoba, 1025-1075.

Coggon, R. & Holland, T.J. (2002). Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology, 20(7): 683-696. https://doi.org/10.1046/j.1525-1314.2002.00395.x

Dempster, T.J. (1992). Zoning and recrystallization of phengitic micas: implications for metamorphic equilibration. Contributions to Mineralogy and Petrology, 109(4): 526-537. https://doi.org/10.1007/BF00306554

Ducart, D.F.; Crósta, A.P.; Souza Filho, C.R. & Coniglio, J. (2006). Alteration mineralogy at the Cerro La Mina epithermal prospect, Patagonia, Argentina: field mapping, shortwave infrared spectroscopy and ASTER images. Economic Geology, 101: 981-996. https://doi.org/10.2113/gsecongeo.101.5.981

Eberl, D.D.; Srodon, J.; Lee, M.; Nadeau, P.H. & Northrop, H.R. (1987). Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin, and particle thickness. American Mineralogist, 72: 914–934.

Ernst, W.G. (1963). Significance of phengitic micas from low-grade schists. American Mineralogist, 48: 1357-1373.

Fagiano, M.; Pinotti, L.; Esparza, A. & Martino, R. (2002). La faja de cizalla Guacha Corral, Sierras Pampeanas de Córdoba, Argentina. Libro de Actas, XV Congreso Geológico Argentino, El Calafate (Argentina), 259-264.

Gettings, M.E. (2005). Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming. Nonlinear Processes in Geophysics, 12(5): 587-601. https://doi.org/10.5194/npg-12-587-2005

Gouzu, C.; Itaya, T. & Takeshita, H. (2005). Interlayer cation vacancies of phengites in calcshists from the Piemonte zone, western Alps, Italy. Journal of Mineralogical and Petrological Sciences, 100(4): 142–149. https://doi.org/10.2465/jmps.100.143

Green, T.H. & Hellman, P.L. (1982). Fe-Mg partitioning between coexisting garnet and phengite at high pressure and comments on a garnet-phengite geothermometer. Lithos, 15(4): 253-266. https://doi.org/10.1016/0024-4937(82)90017-2

Groves, D.; Goldfarb, R.; Robert, F. & Hart, C. (2003). Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1): 1-29.

Guo, N.; Guo, K.; Zhang, T. & Liu, T. (2012). Hydrothermal alteration distribution model of the Jiama (Gyama) copper-polymetallic deposit based on shortwave technique. Acta Geoscientica Sinica, 33(4): 641-653.

Haeberlin, Y.; Moritz, R. & Fontboté, L. (2002). Paleozoic orogenic gold deposits in the eastern Central Andes and its foreland, South America. Ore Geololgy Reviews, 22: 41-59. https://doi.org/10.1016/S0169-1368(02)00108-7

Harvey, C.C. & Browne, P.R. (1991). Mixed-layer clay geothermometry in the Wairakei Geothermal Field, New Zealand. Clays and Clay Minerals, 39: 614-621. https://doi.org/10.1346/CCMN.1991.0390607

Hauff, P. (2008). An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration. Spectral International Inc., Arvada (Colorado), 71 pp.

Hauff, P.L.; Kruse, F.A. & Madrid, R.J. (1989). Gold exploration using illite polytypes defined by X-ray diffraction and reflectance and reflectance spectroscopy. Proceedings of the World Gold '89 Joint International Meeting of SME and AusIMM, 76-82.

Hemley, J.J. & Jones, W.R. (1964). Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Economic Geology, 59: 538–569. https://doi.org/10.2113/gsecongeo.59.4.538

Herrmann, W.; Blake, M.; Doyle, M.; Huston, D.; Kamprad, J.; Merry, N. & Pontual, S. (2001). Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939-955. https://doi.org/10.2113/96.5.939

Irvine, R.J. & Smith, M.J. (1990). Geophysical exploration for epithermal gold deposits. Journal of Geochemical Exploration, 36(1): 375-412. https://doi.org/10.1016/0375-6742(90)90061-E

Krogh Ravna, E.J. & Terry, M.P. (2004). Geothermobarometry of UHP and HP eclogites and schists: an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengite–coesite/quartz. Journal of metamorphic Geology, 22(6): 579-592. https://doi.org/10.1111/j.1525-1314.2004.00534.x

Kruse, F. A. & Hauff, P. L. (1991). Identification of illite polytype zoning in disseminated gold deposits using reflectance spectroscopy and X-ray diffraction-potential for mapping with imaging spectrometers. IEEE Transactions on Geoscience and Remote Sensing, 29(1): 101-104. https://doi.org/10.1109/36.103298

Kübler, B. (1987). Cristallinité de l'illite, méthodes normalisées de préparations, méthodes normalisées de mesures. Cahier Institut de Géologie de Neuchâtel, Série ADX, 13 pp.

Kübler, B. & Jaboyedoff, M. (2000). Cristallinité de l'illite. Le POINT SUR. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 331: 75-89.

Laakso, K.; Rivard, B.; Peter, J.M.; White, H.P.; Maloley, M.; Harris, J. & Rogge, D. (2015). Application of airborne, laboratory and field hyperespectral methods to mineral exploration in the Canadian arctict: recognition and characterization of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok Lake Deposit Area, Nunavut, Canada. Economic Geology, 110: 925-941. https://doi.org/10.2113/econgeo.110.4.925

Laakso, K.; Peter, J. M.; Rivard, B. & White, H. P. (2016). Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring. Economic Geology, 111(5): 1223-1239. https://doi.org/10.2113/econgeo.111.5.1223

Lapointe, P.; Morris, W.A. & Harding, K.L. (1986). Interpretation of magnetic susceptibility: a new approach to geophysical evaluation of the degree of rock alteration. Canadian Journal of Earth Sciences, 23(3): 393-401. https://doi.org/10.1139/e86-041

Li, S.; Wang, S.; Chen, Y.; Liu, D.; Qiu, J.I., Zhou, H. & Zhang, Z. (1994). Excess argon in phengite from eclogite: Evidence from dating of eclogite minerals by Sm/Nd, Rb/Sr and 40Ar/39Ar methods. Chemical Geology, 112(3): 343-350. https://doi.org/10.1016/0009-2541(94)90033-7

Maffini, M.N. (2015). Estudio petro-estructural, mineralógico y metalogenético de depósitos vetiformes mesotermales (Pb-Zn-Cu-Ag-Au) emplazados en el basamento metamórfico de la Sierra de Comechingones, en proximidad a cuerpos ígneos plutónicos, Sierras Pampeanas Orientales. Tesis Doctoral, Universidad Nacional de Río Cuarto (Argentina), 284 pp.

Maffini, M.N.; Coniglio, J.; D'Eramo, F.; Demartis, M.; Pinotti, L.; Bin, I. & Petrelli, H. (2012). Vetas mesotermales de Pb-Zn-Ag-Au emplazadas al este del Batolito Cerro Áspero, Sierra de Comechingones, Córdoba. Serie de Correlación Geológica, 28(2): 93-106.

Maffini, M.N.; Coniglio, J.; D'Eramo, F.; Demartis, M. & Brodtkorb, M. (2013). Hallazgo de halogenuros de plata en vetas hidrotermales emplazadas en el basamento metamórfico de la Sierra de Comechingones, Córdoba. Actas del 11° Congreso de Mineralogía y Metalogenia, San Juan (Argentina), 239-242.

Maffini, M.N.; Ducart, D.F; Coniglio, J.; D'Eramo, F.; Moreira Silva, A.; Demartis, M.; Bemfica Toledo, C. & Pinotti, L. (2015). Espectroscopía de reflectancia aplicada al estudio de depósitos polimetálicos de Pb, Zn, Cu ± Ag ± Au del sur de la Sierras de Córdoba, Argentina. XVII Simpósio Brasileiro de Sensoriamento Remoto, João Pessoa-PB (Brasil), 5477-5484.

Martino, R. (2003). Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una rese-a general. Revista de la Asociación Geológica Argentina, 58(4): 549-571.

Meunier, A. & Velde, B. (1982). Phengitization, sericitization and potassium-beidellite in a hydrothermally altered granite. Clays and clay Minerals, 17(3): 285- 299. https://doi.org/10.1180/claymin.1982.017.3.02

Meunier, A. & Velde, B. (2013). Illite: Origins, evolution and metamorphism. Springer Science & Business Media, Germany, 289 pp.

Mutti, D.; Di Marco, A. & Geuna S. (2007). Depósitos polimetálicos en el Orógeno Famatiniano de las Sierras Pampeanas de San Luis y Córdoba: fluidos, fuentes y modelos de emplazamiento. Revista de la Asociación Geológica Argentina, 62(1): 44-6.

Otamendi, J.; Castellarini, P.; Fagiano, M.; Demichelis, A. & Tibaldi, A. (2004). Cambrian to Devonian Geologic Evolution of the Sierra de Comechingones, Estern Sierras Pampeanas, Argentina: Evidence for the Development and exhumation of Continental Crust on the Proto-Pacific Margin of Gondwana. Gondwana Research, 7(4): 1143-1155. https://doi.org/10.1016/S1342-937X(05)71090-X

Peter, J. M.; Layton-Matthews, D,: Gadd, M. G.; Gill, S.; Baker, S.; Plett, S. & Paradis, S. (2015). Application of Visible-Near Infrared and Short Wave Infrared Spectroscopy to Sediment-hosted Zn-Pb Deposit Exploration in the Selwyn Basin, Yukon. In: Targeted Geoscience Initiative 4: Sediment-hosted Zn-Pb Deposits: Processes and Implications for Exploration (Paradis, S., Ed.), Geological Survey of Canada, 152-172. https://doi.org/10.4095/296336

Pontual, S.; Merry, N. & Gamson, P. (1997). G-Mex Volume 1: Special Interpretation Field Manual. Ausspec International, Kew, 55p.

Radice, S.; Pinotti, L.; Lince Klinger, F.; Fagiano, M. & Giménez, M. (2014). Resultados gravimétricos preliminares de la porción central de la Sierra de Comechingones, Córdoba, Argentina. XXVII Reunión Científica de la Asociación Argentina de Geofísicos y geodestas, San Juan (Argentina), 393.

Reyes, A. G. (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, 43(1): 279-309. https://doi.org/10.1016/0377-0273(90)90057-M

Rieder, M.; Cavazzini, G.; D'Yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guggenheim, S.; Koval, P.V.; Müller, G.; Neiva, A.M.R.; Radoslovich, E.W.; Robert, J. L.; Sassi, F.P.; Takeda, H.; Weiss, Z. & Wones, D.R. (1998). Nomenclature of the micas. The Canadian Mineralogist, 36: 905–912. https://doi.org/10.1346/CCMN.1998.0460513

Scott, K. M. & Yang, K. (1997). Spectral reflectance studies of white micas. Australian Mineral Industries Research Association Ltd. Report 439, 35 pp.

Skirrow R.G.; Camacho, A.; Lyons, P.; Pieters, P.; Sims, J.; Stuart-Smith, P. & Miró, R. (2000). Metallogeny of the southern Sierras Pampeanas, Argentina: Geological, 40Ar-39Ar dating and stable isotope evidence for Devonian Au, Ag-Pb-Zn and W ore formation. Ore Geology Review, 17: 39-81. https://doi.org/10.1016/S0169-1368(00)00004-4

Sonntag, I.; Laukamp, C. & Hagemann, S. G. (2012). Low potassium hydrothermal alteration in low sulfidation epithermal systems as detected by IRS and XRD: An example from the Co–O mine, Eastern Mindanao, Philippines. Ore Geology Reviews, 45: 47-60. https://doi.org/10.1016/j.oregeorev.2011.08.001

Steiner, A. (1968) Clay minerals in hydrothermally altered rocks at Wairakei, New Zeland. Clays and Clay Minerals, 16: 193-213. https://doi.org/10.1346/CCMN.1968.0160302

Steiner, A. (1977). The Wairakei geothermal area, North Island, New Zealand: its subsurface geology and hydrothermal rock alteration. New Zealand Department of Scientific and Industrial Research, Wellington, 135 pp.

Tappert, M.; Rivart, B.; Giles, D.; Tappert, R. & Mauger, A. (2013). The mineral chemistry, near– infrared and middle-infrared spectroscopy of phengite from the Olympic Dam deposit, South Australia. Ore Geology Reviews, 53: 26-38. https://doi.org/10.1016/j.oregeorev.2012.12.006

Thompson, A.J.; Hauff, P.L. & Robitaille, A.J. (1999). Alteration mapping in exploration—application of short-wave infrared (SWIR) spectroscopy. Society of Economic Geologists Newsletter, 39(1): 16–27.

Van Ruitenbeek, F.J.; Cudahy, T.; Hale, M. & van der Meer, F.D. (2005). Tracing fluid pathways in fossil hydrothermal systems with near-infrared spectroscopy. Geology, 33(7): 597-600. https://doi.org/10.1130/G21375.1

Van Ruitenbeek, F. J.; Debba, P.; van der Meer, F. D.; Cudahy, T.; van der Meijde, M. & Hale, M. (2006). Mapping white micas and their absorption wavelengths using hyperspectral band ratios. Remote Sensing of Environment, 102(3): 211-222. https://doi.org/10.1016/j.rse.2006.02.012

Velde, B. (1965). Phengite micas: synthesis, stability, and natural occurrence. American Journal of Science, 263: 886–913. https://doi.org/10.2475/ajs.263.10.886

Yang, K.; Huntington, J.F.; Cudahy, T J.; Mason, P. & Scott, K.M. (2001). Spectrally mapping the compositional variation of white micas in hydrothermal systems and the application in mineral exploration. En Geoscience and Remote Sensing Symposium, Sydney, Australia, 7: 3294-3296. https://doi.org/10.1109/IGARSS.2001.978333

Yang, K.; Huntington, J. F.; Gemmell, J. B. & Scott, K. M. (2011). Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy. Journal of Geochemical Exploration, 108(2): 143-156. https://doi.org/10.1016/j.gexplo.2011.01.001

Published

2017-06-30

How to Cite

Maffini, M. N., Ducart, D. F., Radice, S., Coniglio, J., D’Eramo, F., Demartis, M., Pinotti, L., Moreira Silva, A., & Bemfica Toledo, C. L. (2017). Petrographic, spectral and magnetic susceptibility study of hydrothermal alteration associated with Pb-Zn-Cu-Ag-Au polymetallic deposits in the Sierra de Comechingones, Córdoba (Argentina). Estudios Geológicos, 73(1), e061. https://doi.org/10.3989/egeol.42408.403

Issue

Section

Articles