Assessment of the possibility of storing compressed air in the subsurface of the Basque-Cantabrian basin (North Spain): geomechanical study of the Keuper formation

Authors

DOI:

https://doi.org/10.3989/egeol.43115.480

Keywords:

Energy Storage, Geomechanical characterization, salt, Basque-Cantabrian basin

Abstract


The technology of storage of compressed air in the subsurface, supposes a solution with great storage capacity and management, besides that its costs are the least compared to other solutions. However, it requires a careful characterization of the target mass, in order to minimize the exploratory risk. In this case, the mechanical properties of the Keuper formation are evaluated, as a geological formation to build the proposed energy infrastructure, considering the mini-CAES concept, as a concept of compressed air storage in the subsurface by means of shallow and small cavities. Studies have been carried out using uniaxial tests and wave propagation in order to determine the main parameters and thus a safety coefficient. According to the calculation of the safety coefficient, it is considered that these shallow cavities offer a clearly superior value compared to conventional cavities, whose depth is greater than 700m. In this way, progress is made in the definition of these cavities of lower volumetric capacity and depth.

Downloads

Download data is not yet available.

References

Bozzolani, E. (2010). Techno-economic analysis of compressed air energy storage systems. Crandfield University, 203 pp. URI: http://dspace.lib.cranfield.ac.uk/handle/1826/6786

Carracedo-Sanchez, M.; Sarrionandia, F. & Juteau, T. (2012). El Vulcanismo Submarino de Edad Cretácica de la Cuenca Vasco-Cantábrica. Revista de la Sociedad Espa-ola de Mineralogía, 16: 260–267.

Chen, H.; Cong, Y.; Yang, W.; Tan, C.; Li, Y. & Ding, Y. (2009) Progress in electrical energy storage: a critical review. Progress in Natural Science, 19(3): 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014

EUROSTAT. http://ec.europa.eu/eurostat/statistics-explained/index.php. Acceso el 27 de junio de 2016.

Fertig, E. & Apt, J. (2011) Economics of compressed air energy storage to integrate wind power: a case study in ERCOT. Energy Policy, 39(5): 2330–2342. https://doi.org/10.1016/j.enpol.2011.01.049

U.T.E. Tecnología de la Naturaleza SL & Grama Estudio de Arquitectura y Medioambiente SL (2012). Síntesis Geológica de la Comunidad Autónoma del País Vasco. Departamento de Medioambiente y Política Territorial, Gobierno Vasco, 17 pp.

I.P.C.C. (2014). Climate Change 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1435 pp.

Kim, H.M.; Rutqvist, J.; Ryu, D.W.; Choi, B.H.; Sunwoo, C. & Song, W.K. (2012). Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modelling study of air tightness and energy balance. Applied Energy, 92: 653–667. https://doi.org/10.1016/j.apenergy.2011.07.013

Kyriakopoulos, G.L. & Arabatzis, G. (2016) Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews. 56: 1044–1067. https://doi.org/10.1016/j.rser.2015.12.046

Heijdra, J.J. & Prij, J. (1992). Convergence measurements in a 300 m deep borehole in rock salt. Netherlands Energy Research Foundation ECN, 24 pp.

Hoek, E. & Brown, E.T. (1980). Underground excavations in rock. The Institution of Mining and Metallurgy, London, 527 pp.

Hoek, E. (1990). Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(3): 227–229. https://doi.org/10.1016/0148-9062(90)94333-O

Ibrahim, H.; Ilinca, A. & Perron, J. (2008) Energy Storage Systems – characteristics and comparisons. Renewable and sustainable energy reviews. 12: 1221–1250. https://doi.org/10.1016/j.rser.2007.01.023

King, M.S. (1983). Static and dynamic elastic properties of rocks from the Canadian Shield. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(5): 237–241. https://doi.org/10.1016/0148-9062(83)90004-9

Lanaja J.M. & Navarro, A. (1987) Contribución de la exploración petrolífera al conocimiento de la geología de Espa-a. IGME, 465 pp.

Liang, G.C.; Huang, X.; Peng X.Y.; Tian, Y. & Yu, Y.H. (2016) Investigation on the cavity evolution of underground salt cavern gas storage. Journal of Natural Gas Science and Engineering. 33: 118–134. https://doi.org/10.1016/j.jngse.2016.05.018

Llamas, B.; Casta-eda, M.C.; Laín, C. & Pous, J. (2017a). Multi-criteria algorithm-based methodology used to select suitable domes for compressed air Energy storage. International Journal of Energy Research. 41 (14): 2108–2120. https://doi.org/10.1002/er.3771

Llamas, B.; Casta-eda, M.C.; Laín, C. & Pous, J. (2017b). Study of the Basque-Cantabrian basin as a suitable region for the implementation of an energy storage system based on compressed air underground storage (CAES). Environmental Earth Sciences. 76: 204. https://doi.org/10.1007/s12665-017-6515-y

Llamas, B.; Laín, C.; Casta-eda, M.C. & Pous, J. (2018). Mini-CAES as a reliable and novel approach to store renewable energy in salt domes. Energy, 144(1): 482–489. https://doi.org/10.1016/j.energy.2017.12.050

Liang G-c, Huang X, Peng X-y, Tian Y, Yu Y-h. (2016) Investigation on the cavity evolution of underground salt cavern gas storage. Journal of Natural Gas Science and Engineering, 33: 118–134. https://doi.org/10.1016/j.jngse.2016.05.018

Lund, H. & Salgi, G. (2009) The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management. 50: 1172–1179. https://doi.org/10.1016/j.enconman.2009.01.032

Luo, X.I.N.G. & Wang, J. (2013). Overview of current development on compressed air energy storage. EERA Technical Report, School of Engineering, University of Warwick, Coventry, 38 pp.

Luo, X.; Wang, J.; Dooner, M. & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137: 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081

Madlener, R. & Latz, J. (2013). Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Applied Energy. 101: 299–309. https://doi.org/10.1016/j.apenergy.2011.09.033

McCartney, J.S.; Sanchez, M. & Tomac, I. (2016). Energy geotechnics: advances in subsurface energy recovery, storage, exchange, and waste management. Computers and Geotechnics, 75: 244–256. https://doi.org/10.1016/j.compgeo.2016.01.002

Vera, J.A. (2010) Geología de Espa-a. Instituto Geológico y Minero de España, Madrid, 884 pp.

Published

2018-06-30

How to Cite

Laín, C., Llamas, B., Laín, R., Sanchez, A. B., & Arlandi, M. (2018). Assessment of the possibility of storing compressed air in the subsurface of the Basque-Cantabrian basin (North Spain): geomechanical study of the Keuper formation. Estudios Geológicos, 74(1), e078. https://doi.org/10.3989/egeol.43115.480

Issue

Section

Articles