Assessment of the possibility of storing compressed air in the subsurface of the Basque-Cantabrian basin (North Spain): geomechanical study of the Keuper formation
DOI:
https://doi.org/10.3989/egeol.43115.480Keywords:
Energy Storage, Geomechanical characterization, salt, Basque-Cantabrian basinAbstract
The technology of storage of compressed air in the subsurface, supposes a solution with great storage capacity and management, besides that its costs are the least compared to other solutions. However, it requires a careful characterization of the target mass, in order to minimize the exploratory risk. In this case, the mechanical properties of the Keuper formation are evaluated, as a geological formation to build the proposed energy infrastructure, considering the mini-CAES concept, as a concept of compressed air storage in the subsurface by means of shallow and small cavities. Studies have been carried out using uniaxial tests and wave propagation in order to determine the main parameters and thus a safety coefficient. According to the calculation of the safety coefficient, it is considered that these shallow cavities offer a clearly superior value compared to conventional cavities, whose depth is greater than 700m. In this way, progress is made in the definition of these cavities of lower volumetric capacity and depth.
Downloads
References
Bozzolani, E. (2010). Techno-economic analysis of compressed air energy storage systems. Crandfield University, 203 pp. URI: http://dspace.lib.cranfield.ac.uk/handle/1826/6786
Carracedo-Sanchez, M.; Sarrionandia, F. & Juteau, T. (2012). El Vulcanismo Submarino de Edad Cretácica de la Cuenca Vasco-Cantábrica. Revista de la Sociedad Espa-ola de Mineralogía, 16: 260–267.
Chen, H.; Cong, Y.; Yang, W.; Tan, C.; Li, Y. & Ding, Y. (2009) Progress in electrical energy storage: a critical review. Progress in Natural Science, 19(3): 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014
EUROSTAT. http://ec.europa.eu/eurostat/statistics-explained/index.php. Acceso el 27 de junio de 2016.
Fertig, E. & Apt, J. (2011) Economics of compressed air energy storage to integrate wind power: a case study in ERCOT. Energy Policy, 39(5): 2330–2342. https://doi.org/10.1016/j.enpol.2011.01.049
U.T.E. Tecnología de la Naturaleza SL & Grama Estudio de Arquitectura y Medioambiente SL (2012). Síntesis Geológica de la Comunidad Autónoma del País Vasco. Departamento de Medioambiente y Política Territorial, Gobierno Vasco, 17 pp.
I.P.C.C. (2014). Climate Change 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1435 pp.
Kim, H.M.; Rutqvist, J.; Ryu, D.W.; Choi, B.H.; Sunwoo, C. & Song, W.K. (2012). Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modelling study of air tightness and energy balance. Applied Energy, 92: 653–667. https://doi.org/10.1016/j.apenergy.2011.07.013
Kyriakopoulos, G.L. & Arabatzis, G. (2016) Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews. 56: 1044–1067. https://doi.org/10.1016/j.rser.2015.12.046
Heijdra, J.J. & Prij, J. (1992). Convergence measurements in a 300 m deep borehole in rock salt. Netherlands Energy Research Foundation ECN, 24 pp.
Hoek, E. & Brown, E.T. (1980). Underground excavations in rock. The Institution of Mining and Metallurgy, London, 527 pp.
Hoek, E. (1990). Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(3): 227–229. https://doi.org/10.1016/0148-9062(90)94333-O
Ibrahim, H.; Ilinca, A. & Perron, J. (2008) Energy Storage Systems – characteristics and comparisons. Renewable and sustainable energy reviews. 12: 1221–1250. https://doi.org/10.1016/j.rser.2007.01.023
King, M.S. (1983). Static and dynamic elastic properties of rocks from the Canadian Shield. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(5): 237–241. https://doi.org/10.1016/0148-9062(83)90004-9
Lanaja J.M. & Navarro, A. (1987) Contribución de la exploración petrolífera al conocimiento de la geología de Espa-a. IGME, 465 pp.
Liang, G.C.; Huang, X.; Peng X.Y.; Tian, Y. & Yu, Y.H. (2016) Investigation on the cavity evolution of underground salt cavern gas storage. Journal of Natural Gas Science and Engineering. 33: 118–134. https://doi.org/10.1016/j.jngse.2016.05.018
Llamas, B.; Casta-eda, M.C.; Laín, C. & Pous, J. (2017a). Multi-criteria algorithm-based methodology used to select suitable domes for compressed air Energy storage. International Journal of Energy Research. 41 (14): 2108–2120. https://doi.org/10.1002/er.3771
Llamas, B.; Casta-eda, M.C.; Laín, C. & Pous, J. (2017b). Study of the Basque-Cantabrian basin as a suitable region for the implementation of an energy storage system based on compressed air underground storage (CAES). Environmental Earth Sciences. 76: 204. https://doi.org/10.1007/s12665-017-6515-y
Llamas, B.; Laín, C.; Casta-eda, M.C. & Pous, J. (2018). Mini-CAES as a reliable and novel approach to store renewable energy in salt domes. Energy, 144(1): 482–489. https://doi.org/10.1016/j.energy.2017.12.050
Liang G-c, Huang X, Peng X-y, Tian Y, Yu Y-h. (2016) Investigation on the cavity evolution of underground salt cavern gas storage. Journal of Natural Gas Science and Engineering, 33: 118–134. https://doi.org/10.1016/j.jngse.2016.05.018
Lund, H. & Salgi, G. (2009) The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management. 50: 1172–1179. https://doi.org/10.1016/j.enconman.2009.01.032
Luo, X.I.N.G. & Wang, J. (2013). Overview of current development on compressed air energy storage. EERA Technical Report, School of Engineering, University of Warwick, Coventry, 38 pp.
Luo, X.; Wang, J.; Dooner, M. & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137: 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081
Madlener, R. & Latz, J. (2013). Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Applied Energy. 101: 299–309. https://doi.org/10.1016/j.apenergy.2011.09.033
McCartney, J.S.; Sanchez, M. & Tomac, I. (2016). Energy geotechnics: advances in subsurface energy recovery, storage, exchange, and waste management. Computers and Geotechnics, 75: 244–256. https://doi.org/10.1016/j.compgeo.2016.01.002
Vera, J.A. (2010) Geología de Espa-a. Instituto Geológico y Minero de España, Madrid, 884 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.