Carbonatation of diatomites and diagenetic limestones/dolomites in freshwater and marine environments (Miocene of Tresjuncos, Cuenca and Níjar, Almería). An example of CO2 sequestration in Nature
DOI:
https://doi.org/10.3989/egeol.43607.541Keywords:
carbonatation, diatomites, opal-A, pseudomorphism, diagenesisAbstract
Carbonate (calcite and dolomite) pseudomorphs after diatoms were identified from marine (Messinian, Níjar section) and freshwater (Turolian, Tresjuncos section) diatomites. The mineralogical and petrological study has allowed to know the replacement of opal-A by calcite or dolomite, and the consequent formation of diagenetic limestones/dolostones, deducing the factors that favor this replacement in both environments. The data obtained are relevant to the research about the use of diatomites for the capture and storage of carbon dioxide through carbonation. A pseudomorphic carbonatation process of the frustules occurred by a direct replacement of the opal-A and a cementation of the microporosity. Opal-A was replaced by calcite or dolomite via a coupled dissolution-precipitation process. The organization of the opal A microspheres inside the frustules could determine the organization of multi-ion complexes / nanoparticles of amorphous carbonates that would later recrystallize to calcite or dolomite crystals. The carbonation of the lacustrine diatomites was favored by the great amount of biota (amphibians, crustaceans, insects, plants…etc.) included in them. In this environment, the sulphate-reduction processes during the degradation of the organic matter generated CO2, which along with pH and salinity changes, facilitated the replacements. It is possible that the carbonatation of the frustules was coeval to the calcite or dolomite precipitation during the fossilization of the biota, and therefore, early diagenetic in origin. The nodules and opaline lenticular beds formation triggered the carbonation process of the marine diatomites because CO2 and Ca are released from the dissolution of biocalcarenites/biocalcitutites included in the diatomites. Small pH variations around 9, and the presence of sulfates, would facilitate the replacement of the valves, during the burial diagenesis.
Downloads
References
Bai, S.; Urabe, S.; Okaue, Y. & Yokoyama, T. (2009). Acceleration effect of sulfate ion on the dissolution of amorphous silica. Journal of colloid and interface Science, 331: 551-554. https://doi.org/10.1016/j.jcis.2008.11.076 PMid:19135681
Bellanca, A.; Calvo, J. P.; Censi, P.; Elizaga, E. & Neri, R. (1989). Evolution of lacustrine diatomite carbonate cycles of Miocene age, southeastern Spain; petrology and isotope geochemistry. Journal of Sedimentary Research, 59: 45-52. https://doi.org/10.1306/212F8F12-2B24-11D7-8648000102C1865D
Bickle, M.; Kampman, N.; Chapman, H.; Ballentine, C.; Dubacq, B.; Galy, A. & Zhou, Z. (2017). Rapid reactions between CO2, brine and silicate minerals during geological carbon storage: Modelling based on a field CO2 injection experiment. Chemical Geology, 468: 17-31. https://doi.org/10.1016/j.chemgeo.2017.07.031
Brolly, C.; Parnell, J. & Bowden, S. (2016). Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments. Planetary and space Science, 121: 53-59. https://doi.org/10.1016/j.pss.2015.12.008
Brugger, J.; McFadden, A.; Lenehan, C. E.; Etschmann, B.; Xia, F.; Zhao, J. & Pring, A. (2010). A novel route for the synthesis of mesoporous and low-thermal stability materials by coupled dissolution-reprecipitation reactions: mimicking hydrothermal mineral formation. CHIMIA International Journal for Chemistry, 64: 693-698. https://doi.org/10.2533/chimia.2010.693 PMid:21138156
Bustillo, M.A. (2010). Silicification of continental carbonates. En: Carbonates in Continental Setting. Processes, Facies and Applications (Alonso-Zarza, A.M. & Tanner, L.H.,Eds.). Elsevier, Amsterdam. Developments in Sedimentology 62: 153-174. https://doi.org/10.1016/S0070-4571(09)06203-7
Bustillo, M. A. (2018). Formación de biodolomita durante un proceso de fosilización de insectos en diatomitas miocenas (Konservat-Lagerstätte Tresjuncos, Cuenca, España). Geogaceta, 64: 127-130.
Bustillo, M. & La Iglesia, A. (1978). Procesos de formación y diagénesis en las rocas silíceas de Sagunto. Estudios Geológicos, 34: 167-174.
Bustillo, M. A. & Ruiz-Ortiz, P. A. (1987). Chert occurrences in carbonate turbidites: examples from the Upper Jurassic of the Betic Mountains (southern Spain). Sedimentology, 34: 611-662. https://doi.org/10.1111/j.1365-3091.1987.tb00790.x
Bustillo, M.; Elorza, J. & Díez-Canseco, D. (2017a). Silicificaciones selectivas en Thalassinoides y otras estructuras biogénicas asociadas a calizas de plataforma marina y hardground (Albiense inferior, Sonabia, Cantabria). Estudios Geológicos 73(1): e064. https://doi.org/10.3989/egeol.42668.435
Bustillo, M.A.; Díaz-Molina, M.; López-García, M.J.; Delclòs, X.; Peláez-Campomanes, P.; Peñalver, E.; Rodríguez-Talavera, R. & Sanchiz, B. (2017b). Geology and paleontology of Tresjuncos (Cuenca, Spain), a new diatomaceous deposit with Konservat-Lagerstätte characteristics from the European late Miocene. Journal of Iberian Geology, 43: 395-411. https://doi.org/10.1007/s41513-017-0032-4
Calvo, J.P.; Pozo, M. & Servant-Vildary, S. (1988). Lacustrine diatomite deposits in the Madrid Basin (Central Spain). Geogaceta, 4: 14-17.
De Yoreo, J.J.; Gilbert, P.U.; Sommerdijk, N.A.; Penn, R.L.; Whitelam, S.; Joester D.; Zhang D.H.; Rimer J.D.; Navrotsky,A.; Banfield J.F.; Wallace, A.F.; Michel M.; Meldrum F.C.; Cölfen H. & Dove P.M. (2015). Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349: aaa6760. https://doi.org/10.1126/science.aaa6760 PMid:26228157
Díaz-Molina, M. & Tortosa, A. (1996). Wet fluvial fans of the Loranca Basin, Upper Oligocene-Lower Miocene, Central Spain. In: Tertiary basins of Spain: the stratigraphic record of crustal kinematics (Friend P. & Dabrio C., Eds.), Cambridge University Press, Cambridge, UK, 300-307. https://doi.org/10.1017/CBO9780511524851.042
Flaathen, T. K.; Oelkers, E. H.; Gislason, S. R. & Aagaard, P. (2011). The effect of dissolved sulphate on calcite precipitation kinetics and consequences for subsurface CO2 storage. Energy Procedia, 4: 5037-5043. https://doi.org/10.1016/j.egypro.2011.02.476
Gómez, J. J.; Díaz-Molina, M. & Lendínez, A. (1996). Tectono-sedimentary analysis of the Loranca Basin (Upper Oligocene-Miocene, central Spain). A non-sequenced foreland basin. In: Tertiary basins of Spain: The stratigraphic record of crustal kinematics (Friend P. & Dabrio C. Eds.), Cambridge University Press, Cambridge, UK, 277-286. https://doi.org/10.1017/CBO9780511524851.040 PMid:8742390
Harker, R. I. (1971). Synthetic calcareous pseudomorphs formed from siliceous microstructures. Science, 173(3993): 235-237. https://doi.org/10.1126/science.173.3993.235 PMid:17741419
Hein, J. R.; O'Neil, J. R. & Jones, M. G. (1979). Origin of authigenic carbonates in sediment from the deep Bering Sea. Sedimentology, 26: 681-705. https://doi.org/10.1111/j.1365-3091.1979.tb00937.x
Hein, J. R.; Yeh, H. W. & Barron, J. A. (1990). Eocene diatom chert from Adak Island, Alaska. Journal of Sedimentary Research, 60: 250-257. https://doi.org/10.1306/212F9165-2B24-11D7-8648000102C1865D
Hernáiz, P.P. & Cabra, P. (1998). Mapa Geológico de España a Escala 1:50.000, hoja nº 661 (Villarejo de Fuentes) y memoria, ITGE, Madrid.
Liesegang, M.; Milke, R.; Kranz, C. & Neusser, G. (2017). Silica nanoparticle aggregation in calcite replacement reactions. Scientific Reports, 7(1): 1-6. https://doi.org/10.1038/s41598-017-06458-8 PMid:29109392 PMCid:PMC5673956
Maliva, R. G. & Siever, R. (1989). Chertification histories of some Late Mesozoic and Middle Palaeozoic platform carbonates. Sedimentology, 36: 907-926. https://doi.org/10.1111/j.1365-3091.1989.tb01753.x
Martínez del Olmo, W. (2019). Cambio climático, acuerdos de París y trampas geológicas donde secuestrar el CO2 en España. Revista de la Sociedad Geológica de España, 32: 87-106.
Meyers, W. J. (1977). Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. Sedimentology, 24: 75-105. https://doi.org/10.1111/j.1365-3091.1977.tb00121.x
Pineda, A.; Giner J.; Zazo C. & Goy J.L. (1981). Mapa Geológico de España 1.50.000, hoja nº 1046 (Carboneras) y memoria. IGME, Madrid 79 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.