Carbonatation of diatomites and diagenetic limestones/dolomites in freshwater and marine environments (Miocene of Tresjuncos, Cuenca and Níjar, Almería). An example of CO2 sequestration in Nature

Authors

DOI:

https://doi.org/10.3989/egeol.43607.541

Keywords:

carbonatation, diatomites, opal-A, pseudomorphism, diagenesis

Abstract


Carbonate (calcite and dolomite) pseudomorphs after diatoms were identified from marine (Messinian, Níjar section) and freshwater (Turolian, Tresjuncos section) diatomites. The mineralogical and petrological study has allowed to know the replacement of opal-A by calcite or dolomite, and the consequent formation of diagenetic limestones/dolostones, deducing the factors that favor this replacement in both environments. The data obtained are relevant to the research about the use of diatomites for the capture and storage of carbon dioxide through carbonation. A pseudomorphic carbonatation process of the frustules occurred by a direct replacement of the opal-A and a cementation of the microporosity. Opal-A was replaced by calcite or dolomite via a coupled dissolution-precipitation process. The organization of the opal A microspheres inside the frustules could determine the organization of multi-ion complexes / nanoparticles of amorphous carbonates that would later recrystallize to calcite or dolomite crystals. The carbonation of the lacustrine diatomites was favored by the great amount of biota (amphibians, crusta­ceans, insects, plants…etc.) included in them. In this environment, the sulphate-reduction processes during the degradation of the organic matter generated CO2, which along with pH and salinity changes, facilitated the replace­ments. It is possible that the carbonatation of the frustules was coeval to the calcite or dolomite precipitation during the fossilization of the biota, and therefore, early diagenetic in origin. The nodules and opaline lenticular beds formation triggered the carbonation process of the marine diatomites because CO2 and Ca are released from the dissolution of biocalcarenites/biocalcitutites included in the diatomites. Small pH variations around 9, and the presence of sulfates, would facilitate the replacement of the valves, during the burial diagenesis.

Downloads

Download data is not yet available.

References

Bai, S.; Urabe, S.; Okaue, Y. & Yokoyama, T. (2009). Acceleration effect of sulfate ion on the dissolution of amorphous silica. Journal of colloid and interface Science, 331: 551-554. https://doi.org/10.1016/j.jcis.2008.11.076 PMid:19135681

Bellanca, A.; Calvo, J. P.; Censi, P.; Elizaga, E. & Neri, R. (1989). Evolution of lacustrine diatomite car­bonate cycles of Miocene age, southeastern Spain; petrology and isotope geochemistry. Journal of Sedi­mentary Research, 59: 45-52. https://doi.org/10.1306/212F8F12-2B24-11D7-8648000102C1865D

Bickle, M.; Kampman, N.; Chapman, H.; Ballentine, C.; Dubacq, B.; Galy, A. & Zhou, Z. (2017). Rapid reactions between CO2, brine and silicate mine­rals during geological carbon storage: Modelling based on a field CO2 injection experiment. Chemi­cal Geology, 468: 17-31. https://doi.org/10.1016/j.chemgeo.2017.07.031

Brolly, C.; Parnell, J. & Bowden, S. (2016). Raman spec­troscopy: Caution when interpreting organic car­bon from oxidising environments. Planetary and space Science, 121: 53-59. https://doi.org/10.1016/j.pss.2015.12.008

Brugger, J.; McFadden, A.; Lenehan, C. E.; Etschmann, B.; Xia, F.; Zhao, J. & Pring, A. (2010). A novel route for the synthesis of mesoporous and low-thermal stability materials by coupled dissolution-reprecipitation reac­tions: mimicking hydrothermal mineral formation. CHIMIA International Journal for Chemistry, 64: 693-698. https://doi.org/10.2533/chimia.2010.693 PMid:21138156

Bustillo, M.A. (2010). Silicification of continental car­bonates. En: Carbonates in Continental Setting. Pro­cesses, Facies and Applications (Alonso-Zarza, A.M. & Tanner, L.H.,Eds.). Elsevier, Amsterdam. Develo­pments in Sedimentology 62: 153-174. https://doi.org/10.1016/S0070-4571(09)06203-7

Bustillo, M. A. (2018). Formación de biodolomita durante un proceso de fosilización de insectos en diatomi­tas miocenas (Konservat-Lagerstätte Tresjuncos, Cuenca, España). Geogaceta, 64: 127-130.

Bustillo, M. & La Iglesia, A. (1978). Procesos de forma­ción y diagénesis en las rocas silíceas de Sagunto. Estudios Geológicos, 34: 167-174.

Bustillo, M. A. & Ruiz-Ortiz, P. A. (1987). Chert occu­rrences in carbonate turbidites: examples from the Upper Jurassic of the Betic Mountains (southern Spain). Sedimentology, 34: 611-662. https://doi.org/10.1111/j.1365-3091.1987.tb00790.x

Bustillo, M.; Elorza, J. & Díez-Canseco, D. (2017a). Silicificaciones selectivas en Thalassinoides y otras estructuras biogénicas asociadas a calizas de pla­taforma marina y hardground (Albiense inferior, Sonabia, Cantabria). Estudios Geológicos 73(1): e064. https://doi.org/10.3989/egeol.42668.435

Bustillo, M.A.; Díaz-Molina, M.; López-García, M.J.; Delclòs, X.; Peláez-Campomanes, P.; Peñalver, E.; Rodríguez-Talavera, R. & Sanchiz, B. (2017b). Geology and paleontology of Tresjuncos (Cuenca, Spain), a new diatomaceous deposit with Konser­vat-Lagerstätte characteristics from the European late Miocene. Journal of Iberian Geology, 43: 395-411. https://doi.org/10.1007/s41513-017-0032-4

Calvo, J.P.; Pozo, M. & Servant-Vildary, S. (1988). Lacus­trine diatomite deposits in the Madrid Basin (Central Spain). Geogaceta, 4: 14-17.

De Yoreo, J.J.; Gilbert, P.U.; Sommerdijk, N.A.; Penn, R.L.; Whitelam, S.; Joester D.; Zhang D.H.; Rimer J.D.; Navrotsky,A.; Banfield J.F.; Wallace, A.F.; Michel M.; Meldrum F.C.; Cölfen H. & Dove P.M. (2015). Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349: aaa6760. https://doi.org/10.1126/science.aaa6760 PMid:26228157

Díaz-Molina, M. & Tortosa, A. (1996). Wet fluvial fans of the Loranca Basin, Upper Oligocene-Lower Mio­cene, Central Spain. In: Tertiary basins of Spain: the stratigraphic record of crustal kinematics (Friend P. & Dabrio C., Eds.), Cambridge University Press, Cambridge, UK, 300-307. https://doi.org/10.1017/CBO9780511524851.042

Flaathen, T. K.; Oelkers, E. H.; Gislason, S. R. & Aagaard, P. (2011). The effect of dissolved sulphate on calcite precipitation kinetics and consequences for subsur­face CO2 storage. Energy Procedia, 4: 5037-5043. https://doi.org/10.1016/j.egypro.2011.02.476

Gómez, J. J.; Díaz-Molina, M. & Lendínez, A. (1996). Tectono-sedimentary analysis of the Loranca Basin (Upper Oligocene-Miocene, central Spain). A non-sequenced foreland basin. In: Tertiary basins of Spain: The stratigraphic record of crustal kinema­tics (Friend P. & Dabrio C. Eds.), Cambridge Uni­versity Press, Cambridge, UK, 277-286. https://doi.org/10.1017/CBO9780511524851.040 PMid:8742390

Harker, R. I. (1971). Synthetic calcareous pseudomor­phs formed from siliceous microstructures. Science, 173(3993): 235-237. https://doi.org/10.1126/science.173.3993.235 PMid:17741419

Hein, J. R.; O'Neil, J. R. & Jones, M. G. (1979). Origin of authigenic carbonates in sediment from the deep Bering Sea. Sedimentology, 26: 681-705. https://doi.org/10.1111/j.1365-3091.1979.tb00937.x

Hein, J. R.; Yeh, H. W. & Barron, J. A. (1990). Eocene diatom chert from Adak Island, Alaska. Jour­nal of Sedimentary Research, 60: 250-257. https://doi.org/10.1306/212F9165-2B24-11D7-8648000102C1865D

Hernáiz, P.P. & Cabra, P. (1998). Mapa Geológico de España a Escala 1:50.000, hoja nº 661 (Villarejo de Fuentes) y memoria, ITGE, Madrid.

Liesegang, M.; Milke, R.; Kranz, C. & Neusser, G. (2017). Silica nanoparticle aggregation in calcite replace­ment reactions. Scientific Reports, 7(1): 1-6. https://doi.org/10.1038/s41598-017-06458-8 PMid:29109392 PMCid:PMC5673956

Maliva, R. G. & Siever, R. (1989). Chertification histo­ries of some Late Mesozoic and Middle Palaeozoic platform carbonates. Sedimentology, 36: 907-926. https://doi.org/10.1111/j.1365-3091.1989.tb01753.x

Martínez del Olmo, W. (2019). Cambio climático, acuer­dos de París y trampas geológicas donde secuestrar el CO2 en España. Revista de la Sociedad Geológica de España, 32: 87-106.

Meyers, W. J. (1977). Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. Sedimentology, 24: 75-105. https://doi.org/10.1111/j.1365-3091.1977.tb00121.x

Pineda, A.; Giner J.; Zazo C. & Goy J.L. (1981). Mapa Geológico de España 1.50.000, hoja nº 1046 (Carbo­neras) y memoria. IGME, Madrid 79 pp.

Published

2020-06-30

How to Cite

Bustillo, M. A. (2020). Carbonatation of diatomites and diagenetic limestones/dolomites in freshwater and marine environments (Miocene of Tresjuncos, Cuenca and Níjar, Almería). An example of CO2 sequestration in Nature. Estudios Geológicos, 76(1), e125. https://doi.org/10.3989/egeol.43607.541

Issue

Section

Articles