Linajes fantasma y correlación con variables ecológicas: el caso de la Subfamilia Caprinae

Authors

  • J. L. Cantalapiedra Departamento de Paleontología, Facultad de Ciencias Geológicas. Universidad Complutense de Madrid. Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC).
  • M. Hernández Fernández Departamento de Paleontología, Facultad de Ciencias Geológicas. Universidad Complutense de Madrid. Unidad de Investigación de Paleontología. Instituto de Geología Económica (CSIC)
  • J. Morales Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC)

DOI:

https://doi.org/10.3989/egeol.0662116

Keywords:

Phylogeny, ghost lineages, concentrated-changes test, Artiodactyla, Mammalia, fossil record

Abstract


Integration between systematic phylogenetics and palaeontological data has been probed to be an effective methodology to value palaeodiversities because it identifies periods in the evolutionary history of the clade without fossil representation. These are called ghost lineages. In this work we explore the possible relationship of ghost lineages duration with biometric, biogeografic or ecological variables in the Subfamily Caprinae (Bovidae, Mammalia). Variables were codified as binary characters and their relationship was examined using the concentrated-changes test. Our results indicate that species appearing in rainforest, warm temperate forest, taiga and desert biomes are related with high proportion of ghost lineages, while those from steppe biome present lower proportions. Zones inhabited by species of Caprinae in rainforest, warm temperate forest, taiga and desert are usually associated with high altitudes and a steep topography. Thus, we interpret that proportions in ghost lineages would be determined by probabilities of sedimentation and fossil site development .

Downloads

Download data is not yet available.

References

Adkins, R. M., Gelke, E.L., Rowe, D. y Honeycutt, R. L. (2001). Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Mol. Biol. Evol., 18: 777-791.

Alba, D. M., Agustí, J. y Moyà-Solà, S. (2001). Completeness of the mammalian fossil record in the Iberian Neogene. Paleobiology, 21: 79-83. doi:10.1666/0094-8373(2001)027<0079:COTMFR>2.0.CO;2

Answell, W. F. H. (1971). Order Artiodactyla. In The mammals of Africa: an identification manual (eds. J. Meester and H. W. Setzer), pp. 1-84. Smithsonian Institution Press, Washington.

Alroy, J. (1994). Appearance even ordination: a new biochronologic method. Paleobiology, 20: 191-207.

Hall, E. R. (1981). The mammals of North America. John Wiley & Sons, New York, 1.271 págs.

Hartenberger, J. L. (1998). Description de la radiationdes Rodentia (Mammalia) du Paléocène supérieur au Miocène; incidences phylogénétiques. C. R. Acad. Sci. Paris, IIA, 326: 439-444.

Hernández Fernández, M. y Vrba, E. S. (2005). A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol. Rev., 80: 269-302. doi:10.1017/S1464793104006670

Huchon, D., Madsen, O., Sibbald, M. J. J. B., Ament, K., Stanhope, M. J., Catzeflis, F., De Jongand, W. W. y Douzery, E. J. P. (2002). Rodent phylogeny and a timescale for the evolution of glires: evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol., 19: 1053-1065.

Johnson, W. E., Eizirik, E., Pecon-Slattery, J., Murphy, W. J., Antunes, A., Teeling, E. y O’Brien, S. J., (2006). The late radiation of modern Felidae: a genetic assesement. Science, 311: 73-77. doi:10.1126/science.1122277

Köhler, M. (1993). Skeleton and Habitat of recent and fossil Ruminants. Münchner Geowissens. Abh. Reihe A: Geol. Paläont., 25: 1-88.

Lane, A., Janis, C. M., y Sepkoski, J. J. (2005). Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology, 31: 21-34. doi:10.1666/0094-8373(2005)031<0021:EPATOT>2.0.CO;2

Maddison, W. P. (1990). A method for testing the correlated evolution of two binary characters: Are gains or losses concentrated on certain branches of a phylogenetic tree? Evolution, 44: 539-557. doi:10.2307/2409434

Maddison W. P., Maddison D. R. (2002). MacClade, Version 4.05.

Norell, A. M. (1992). Taxic origin and temporal diversity: the effect of phylogeny, in Novacek, M. J., and Wheeler, Q. D., editors, Extintion and Phylogeny. New York, Columbia University Press, 89-118.

Norell, A.M. (1993). Tree-Based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. Amer. J. Sci., 239-A: 407-417.

Norell, A. M. (1996). Ghost taxa, ancestors and assumptions: a comment on Wagner. Paleobiology, 22: 453-455.

Norell, M. A. and Novacek, M. J. (1992). The fossil record and evolution: Comparing cladistic and paleontologic evidence for vertebrate history. Science, 255: 1690-1693. doi:10.1126/science.255.5052.1690

Norell, M. A. and Novacek, M. J. (1992). Congruence between superpositional and phylogenetic patterns: comoparing caldistic patterns with fossil records. Cladistics. 8: 319-337. doi:10.1111/j.1096-0031.1992.tb00074.x

O’Keefe, F. R., y Sander, P. M. (1999). Paleontological paradigms and inferences of phylogenetic pattern: a case study. Paleobiology, 25: 518-533.

Paul, C. R. C. (1982). The adequacy of the fossil record. En: S. Donovan y C. Paul (eds.), The adequacy of the fossil record, John Wiley and Sons, Chichester, págs. 75-117.

Pickford, M., Morales, J. (1994). Biostratigraphy and paleobiogeography of East Africa and the Iberian Peninsula. Paleogeogr. Paleoclimatol. Paleoecol., 112: 297-322. doi:10.1016/0031-0182(94)90078-7

Ropiquet, A. y Hassanin, A. (2004). Molecular phylogeny of caprines (Bovidae, Antilopinae): the question of their origin and diversification during the Miocene. J. Zool. Syst. Evol. Res., 43: 49-60. doi:10.1111/j.1439-0469.2004.00290.x

Scott, K. M. (1985). Allometric trends and locomotor adaptations in the bovidae. Bull. Amer. Mus. Nat. Hist., 179: 197-288.

Sidor, C.A. y Hopson, J.A. (1998). Ghost lineages and «mammalness»: assesing the temporal pattern of character acquisition in the Synapsida. Paleobiology, 24: 254-273.

Smith, A. B. (1994). Systematics and the fossil record. Backwell Scientific Publications. Oxford, 223 págs.

Swofford, D. L., and Maddison. W. P. (1987). Reconstructing ancestral character states under Wagner parsimony. Math. Biosci., 87: 199-229. doi:10.1016/0025-5564(87)90074-5

Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’Brien, S. J. y Murphy, W. J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307: 580-584. doi:10.1126/science.1105113

Wagner, P. J. (1995). Stratigraphic tests of cladistic hypothesis. Paleobiology, 21: 153-178.

Wagner, P. J. (2000). The Quality of fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematics Biol., 49: 65-86. doi:10.1080/10635150050207393

Weishampel, D. B. (1996). Fossils, phylogeny and discovery: a cladistic study of the history of tree topologies and ghost lineages durations. J. Vertebr. Paleont., 16: 191-197.

Wills, M. A. (2002). The tree of life and the rock of ages: are we getting better at estimating phylogeny? BioEssays, 24: 203-207. doi:10.1002/bies.10065

Wilson, D. E. and Reeder, D. M. (1993). Mammal Species of the World: a taxonomic and geographic reference. Smithsonian Institution Press, Washington, 1.207 págs.

Downloads

Published

2006-12-30

How to Cite

Cantalapiedra, J. L., Hernández Fernández, M., & Morales, J. (2006). Linajes fantasma y correlación con variables ecológicas: el caso de la Subfamilia Caprinae. Estudios Geológicos, 62(1), 167–176. https://doi.org/10.3989/egeol.0662116

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>