Hydrogeology of Pico Frentes Karst system (Iberian range, Spain)

Authors

  • P. Rosas Laboratorio de Geología Aplicada. Dpto. de Ingeniería y Morfología del Terreno. E.T.S. de Ingenieros de Caminos, Canales y Puertos.
  • E. Sanz Laboratorio de Geología Aplicada. Dpto. de Ingeniería y Morfología del Terreno. E.T.S. de Ingenieros de Caminos, Canales y Puertos.
  • I. Menéndez-Pidal Laboratorio de Geología Aplicada. Dpto. de Ingeniería y Morfología del Terreno. E.T.S. de Ingenieros de Caminos, Canales y Puertos.

DOI:

https://doi.org/10.3989/egeol.42132.375

Keywords:

Karstic Hydrogeology, Aquifer hydrodynamic, Hydraulic balance, Iberian Range

Abstract


The karst system of Pico Frentes has developed within an Upper Cretaceous calcareous series whose well-defined folded geometry determines that its aquifer reserves are held mainly in three hydraulically-connected synclines, with a groundwater capacity of between 5 and 7 hm3 . The recharge to this unconfined peneplain aquifer is autogenous and diffuse. On a large scale, groundwater flow is directed by the base of the synclines, while on a small scale, it flows along groundwater conduits towards the Fuentetoba Spring (210 l/s) and source of the River Mazos (50 l/s), following a highly variable flow regime of low inertia, with other smaller discharges emanating during periods of high water. Analysis of hydrographs of these springs indicates a very variable rate system and little power regulating natural, characteristic of a typical karstic aquifer, with great capacity for renewal and low residence time. Using hydrogram simulations of these upwellings using a mathematical rainfall-runoff model, a detailed quantification of the average water balance was made for a twenty-year time series. This water balance consists of 16,86 hm3 rainfall (100%); natural recharge, 8,35 hm3 (49,53%); EVT 8,50 hm3 (50,41%); pumped groundwater abstractions, 0,01hm3 (0,06%); surface runoff, 0 hm3 , groundwater transfers to other aquifer, 0 hm3 .

Downloads

Download data is not yet available.

References

Antigüedad, I. (1989). Funcionamiento de los acuíferos kársticos estatales (revisión de las metodologías basadas en las respuestas naturales). En: Durán, J.J. & López-Martínez, J. (Eds.). El karst en España. Sociedad Española de Geomorfología, 309–319.

Antigüedad, I.; Ibarra, V. & Morales, T. (1990). Los trazadores en la hidrogeología kárstica: Metodología de su uso e interpretación de los ensayos de trazado. Munibe-Ciencias Naturales, 41: 31–45.

Bakalowicz, M. (1995). La zone d'infiltration des aquifères karstiques. Méthodes d'étude. Structure et fonctionnement. Hydrogéologie, 4: 3–21.

Bakalowicz, M. (2005). Karst groundwater: a challenge for new resources. Hydrogeology Journal, 13: 148–160. http://dx.doi.org/10.1007/s10040-004-0402-9

Bayo, A. (1983). La exploración hidrogeológica de acuíferos en rocas carbonatadas desde la óptica de la explotación de recursos y utilización del almacenamiento. En: Karst-Larra 82: Reunión monográfica sobre el Karst - Larra 82: Isaba-Navarra, 4-11 octubre 1982. Pamplona: Diputación foral de Navarra. Pamplona, 177–215.

Benischke, R.; Goldscheider, N. & Smart, C. (2007). Tracer techniques. En: Goldscheider, N.; Drew, D. (Eds.). Methods in karst hydrogeology: IAH, International Contributions to Hydrogeology, 26. London: Taylor and Francis, 264 pp.

Bonacci, O. (1993). Karst spring hydrographs as indicators of karst aquifers. Hydrological Sciences Journal, 38 (1): 51–62. http://dx.doi.org/10.1080/02626669309492639

Bonacci, O. & Zivaljevic, R. (1993). Hydrological explanation of the flow in karst: example of the Crnojevica spring. Journal of Hydrology, 146 (1): 405–419. http://dx.doi.org/10.1016/0022-1694(93)90287-J

Ford, D.C. & Williams, P. (1989). Karst geomorphology and hydrology. London: Academic Division of Unwin Hyman Ltd, 601 pp. http://dx.doi.org/10.1007/978-94-011-7778-8

Ford, D.C. & Williams, P. (2007). Karst hydrogeology and geomorphology. Chichester, UK: Wiley, 562 pp. http://dx.doi.org/10.1002/9781118684986

Geyer, T.; Birk, S.; Licha, T.; Liedl, R. & Sauter M. (2007). Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water, 45 (1): 36–45. http://dx.doi.org/10.1111/j.1745-6584.2006.00261.x PMid:17257337

Goldscheider, N. & Andreo, B. (2007). The geological and geomorphological framework. En: Goldscheider, N., Drew, D. (Eds.). Methods in karst hydrogeology: IAH, International Contributions to Hydrogeology, 26. London: Taylor and Francis, 264 pp.

Goldscheider, N.; Meiman, J.; Pronk, M. & Smart, C. (2008). Tracer test in karst hydrogeology and speleology. International Journal Speleology, 37 (1): 27–40. http://dx.doi.org/10.5038/1827-806X.37.1.3

Göppert, N. & Goldscheider, N. (2008). Solute and colloid transport in karst conduits under low and high flow conditions. Ground Water, 46 (1): 61–68. PMid:18181865

Gremaud, V.; Goldscheider, N.; Savoy, L.; Favre, G. & Masso, H. (2009). Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuronn-Sanetsch, Swiss Alps. Hydrogeology Journal, 17: 1833–1848. http://dx.doi.org/10.1007/s10040-009-0485-4

Guilbot, A. (1975). Modélisation des ecoulements d’un aquifère karstique (liaisons pluie-débit). Application aux basins de Saugras et du Lez. Thése d’Université, Université des Sciences et Techniques de Montpellier.

Healy, R.W.; Winter, T.C.; LaBaugh, J.W. & Franke, O.L. (2007). Water budget: Foundations for effective water-resources and environmental management. U.S. Geological Survey Circular, 1308, 90 pp.

Instituto Geológico y Minero de España. (1980). Mapa Geológico de España 1: 200.000. Hoja 31. Soria.

Instituto Geológico y Minero de España (1982). Mapa Geológico de España 1: 50.000. Hoja 349. Cabrejas del Pinar.

Jevtic,G.; Dimkic, D.; Dimkic, M. & Josipovic, J. (2005). Regulation of the Krupac spring outflow regime. En: Tevanovic, Z. & Milanovic, P. (Eds.). Water Resources and Environmental Problems in Karst: Cvijic Karst 2005. Belgrade: FMG, 321–326.

Jiménez, P. (2010). Caracterización hidrogeológica de acuíferos carbonáticos del sur de España a partir de sus respuestas naturales. Tesis doctoral, Universidad de Granada, 388 pp. http://hdl.handle.net/10481/5641

Käss, W. (1998). Tracing technique in geohydrology. Taylor & Francis, 582 pp.

Kresic, N. (2009). Groundwater Resources: sustainability, Management and Restoration. New York: McGraw-Hill, 852 pp.

Kresic, N. (2010). Types and classifications of springs. En: Kresic, N. & Stevanovic, Z. (Eds.). Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability. Elsevier, 31–86. http://dx.doi.org/10.1016/b978-1-85617-502-9.00002-5

Kresic, N. & Stevanovic, Z. (2010). Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability. Elsevier, 573 pp.

Mangin, A. (1970). Contribution à létude des aquifères karstiques à partir de l’analyse des courbes de décrue et tarissement. Annales Spéléologie, 25 (3): 581–610.

Mangin, A. (1975): Contribution à létude hydrodinamique des aquifères karstiques (I). Tesis doctoral, Universidad de Dijon (Francia). Annales Spéléologie, 29 (3): 283–332; 29 (4): 495–601; 30 (1): 21–124.

Navarro Vázquez, D. (1991). Soria 359 (14–23). Mapa Geológico de España. 1:50.000. Instituto Geológico y Minero de España, Madrid, 70 pp.

Padilla, A. (1990). Métodos matemáticos aplicados al estudio de acuíferos kársticos. Tesis Doctoral, Universidad de Granada, 267 pp.

Padilla, A.; Pulido- Bosch, A.; Calvache, M.L. & Vallejo, A. (1996). The ARMA models applied to the flow of karstic springs. Water Resources Research, 32 (5): 917–928. http://dx.doi.org/10.1111/j.1752-1688.1996.tb04062.x

Panno, S.V. (2006). Karst aquifers: can they be protect? Ground Water, 44 (4): 494. http://dx.doi.org/10.1111/ j.1745-6584.2006.00164.x

Pérez, J. & Sanz, E. (2010). Hydrodinamic characteristics and sustainable use of karst aquifer of high environmental value in the Cabrejas range (Soria, Spain). Environmental Earth Sciences, 1: 20–30.

Perrin, J. & Luetscher, M. (2008). Inference of the structure of karst conduits using quantitative tracer tests and geological information: example of the Swiss Jura. Hydrogeological Journal, 16 (5): 951–967. http://dx.doi.org/10.1007/s10040-008-0281-6

Portier, L.; Ricour, J. & Tardieu, B. (2005). Port-Miou and Bestouan freshwater submarine spring (Cassis- France) investigations and works (1964–1978). En: Tevanovic, Z. & Milanovic, P. (Eds.). Water Resources and Environmental Problems in Karst: Cvijic Karst 2005. Belgrade: FMG, 267–274.

Pulido, A. (2014). Principios de hidrogeología kárstica. Editorial Universidad de Almería, 409 pp.

Ravbar, N. & Goldscheider, N. (2007). Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica, 36 (3); 397–411. http://dx.doi.org/10.3986/ac.v36i3.174

Rodríguez-López, J.P.; Meléndez, N.; de Boer, P.L. & Soria, A.R. (2010). The action of wind and water in a mid-Cretaceous subtropical erg-margin system, Spain. Sedimentology, 57 (5): 1315–1356.

Sáenz, C. (1935). La Fuente de La Toba y la Hidrología local. Proyecto de Conducción de Aguas Potables de La Toba a Soria. 59 páginas. Mapas y anejos. Ayuntamiento de Soria.

Sáenz, C. (1955). Pico Frentes (Partes I a V). Celtiberia, a-o IV y V, 8 y 9, 229–254 y 245–274.

Sanz, E. (1996a). Le karst du canyon du Lobos et son fonctionnement hydrogéologique. Karstologia, 28: 49–56.

Sanz, E. (1996b). Les systemes karstiques des Sierras de Urbion et de Neila, Burgos, Espagne. Hydrological Sciences Journal, 41 (3): 385–398. http://dx.doi.org/10.1080/02626669609491510

Sanz, E. & Lopez, J.J. (2000). Infiltration Measured by the Drip of stalactites. Ground Water, 38 (2): 247–253. http://dx.doi.org/10.1111/j.1745-6584.2000.tb00336.x

Segovia, R.; Sanz, E. & Menéndez-Pidal, I. (2011). Contribution of Tracers for Understanding the Hydrodynamics of Karstic Aquifers Crossed by Allogenic Rivers, Spain. En: Elando, L. (Ed.). Hydraulic Conductivity. InTech, 246–266. http://dx.doi.org/10.5772/22093

White, W.B. (2002). Karst hydrology: recent developments and open questions. Engineering Geology, 6 (2–3): 85–105. http://dx.doi.org/10.1016/S0013-7952(01)00116-8

White, W.B. (2003). Conceptual models for karstic aquifers. Speleogenesis and Evolution of Karst Aquifers, 1 (1): 11–16.

Wortington, S.R.H. (1999). A comprehensive strategy for understanding flow in carbonate aquifers. En: Palmer, A.N.; Palmer, M.V. & Sasowsky, I.D. (Eds.). Karst modeling. Charles Town: Karst Waters Institute, 30–37.

Zwahlen, F. (Eds.) (2004). Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620). European Commission, Directorate-General XII Science, Research and Development, Brussels.

Published

2016-06-30

How to Cite

Rosas, P., Sanz, E., & Menéndez-Pidal, I. (2016). Hydrogeology of Pico Frentes Karst system (Iberian range, Spain). Estudios Geológicos, 72(1), e047. https://doi.org/10.3989/egeol.42132.375

Issue

Section

Articles