Selective silicification of Thalassinoides and other biogenic structures in marine platform limestones and hardground (Lower Albian, Sonabia, Cantabria)

Authors

DOI:

https://doi.org/10.3989/egeol.42668.435

Keywords:

chert, Thalassinoides, confined diagenesis, biogenic structures, hardground

Abstract


In this work different types of chert from the Oriñón Limestone Formation (upper Aptian-lower Albian) are studied. This formation outcrops in the eastern coast of Cantabria (Liendo-Castro Urdiales area) and includes outstanding and abundant cherty nodules, lenticular layers and crusts. The host rock is mainly a biocalcarenite (wackestone/packstone) of pellets, echinoids fragments, oysters, foraminifers and calcareous or calcified siliceous sponge spicules. The Oriñón Limestone Formation was deposited in a marine open-shelf environment and preserves a hardground of regional extent with particular chert crusts. The silica source is associated to the dissolution of siliceous sponge spicules or to their calcification. Most of the chert is constituted by mosaics of micro-cryptocrystalline quartz and calcedonite, and it is generated by the selective silicification of biogenic structures, mainly dwelling trace fossils (Thalassinoides isp.) because of the higher amount of organic matter and the higher porosity and permeability of the burrow infill. In the hardground, selective silicification affects body fossils such as belemnites, oysters and echinoids, and trace fossils (feeding burrows and borings) where in addition cherts is accumulated as an indeterminate crust. The silicification of the biogenic structures firstly occurred in form of opaline phases during the early diagenesis while the oxidation of the organic matter was active. Thus, Thalassinoides trace fossils affected by silicification preserve filaments and cocoids that might have had a microbial origin. Neoformation of dolomite and calcite occur only within the Thalassinoides trace fossils which indicates that diagenetic processes taking place within these burrows differed from those affecting the host rock and other biogenic structures. Dwelling trace fossils would have supposed a close micro-environment where the oxidation conditions changed from high to low rate.

Downloads

Download data is not yet available.

References

Aranburu, A. (1998). El Aptiense-Albiense de Trucíos-Güe-es (oeste de Bizkaia).Tesis Doctoral, Universidad del País Vasco, 606 pp.

Baldermann, A.; Deditius, A.P.; Dietzel, M.; Fichtner, V.; Fischer, C.; Hippler, D.; Leis, A.; Baldermann, C.; Mavromatis, V.; Stickler, C.P. & Strauss, H. (2015). The role of bacterial sulfate reduction during dolomite precipitation: Implications from Upper Jurassic platform carbonates. Chemical Geology, 412: 1–14. https://doi.org/10.1016/j.chemgeo.2015.07.020

B?k, M.; Gorny, Z. & B?k, K. (2015). Sponge growth on the Cenomanian carbonate shelves of the Carpathian Basin: a record from spicule-rich turbidites. Bulletin of Geosciences, 90: 651–666.

Bown, T.M. & Kraus, M.J. (1983). Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn basin, northwest Wyoming, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, 43: 95–128. https://doi.org/10.1016/0031-0182(83)90050-0

Buatois, L.A. & Mángano, M.G. (2011). Ichnology: Organism-substrate interactions in space and time. Cambridge University Press, New York, 358 pp. https://doi.org/10.1017/CBO9780511975622

Bromley, R.G. & Ekdale, A.A. (1984). Trace Fossil Preservation in Flint in the European Chalk. Journal of Paleontology, 58: 298–311.

Bromley, R. G. & Schönberg, C. H. L. (2008). Borings, bodies and ghosts: spicules of the endolithic sponge Aka akis sp. nov. within the boring Entobia cretacea, Cretaceous, England. In: Current Developments in Bioerosion. Erlangen Earth Conference Series, (Wisshak M. &. Tapanila L., Eds.), Springer-Verlag, Berlin 1–12.

Bustillo, M.A. (2010). Silicification of continental carbonates. En: Carbonates in Continental Settings: Processes, Facies and Applications (Alonso-Zarza A.M. & Tanner L.H., Eds.). Developments in Sedimentology, 62: 153–174.

Bustillo, M.A. & Ruiz Ortiz, P. (1987). Chert occurrences in carbonate turbidites: examples from the Upper Jurassic of the Betic Mountains (southern Spain). Sedimentology, 34: 611–621. https://doi.org/10.1111/j.1365-3091.1987.tb00790.x

Clayton, C. J. (1986). The chemical environment of flint formation in upper Cretaceous Chalks. In: The Scientific Study of flint and chert (Sieveking, G. de C. & Hart, N.B. Eds.). Cambridge University Press, 43–54.

Corlett, H.J. & Jones, B. (2012). Petrographic and Geochemical Contrasts between Calcite- and Dolomite- Filled Burrows in the Middle Devonian Lonely Bay Formation, Northwest Territories, Canada: Implications for Dolomite Formation in Paleozoic Burrows. Journal of Sedimentary Research, 82: 648–663. https://doi.org/10.2110/jsr.2012.57

Dai, H.; Xing, L.; Marty, D.; Zhang, J.; Scott Persons IV, W.; Hu, H. & Wang, F. (2015). Microbially-induced sedimentary wrinkle structures and possible impact of microbial mats for the enhanced preservation of dinosaur tracks from the Lower Cretaceous Jiaguan Formation near Qijiang (Chongqing, China). Cretaceous Research, 53: 98–109. https://doi.org/10.1016/j.cretres.2014.10.012

Dickson, J.A.D.; Wood, R.A.; Bu Al Rougha, H. & Shebl, H. (2008). Sulphate reduction associated with hardgrounds: Lithification afterburn!. Sedimentary Geology, 205: 34–39. https://doi.org/10.1016/j.sedgeo.2008.01.005

Elorza, J. (1992). Geological characterization of the chert and its application to Archaeological research. En: The Late Quaternary in the Western Pyrenean Region. (Cearreta, A. & Ugarte, F., Eds.). Servicio Editorial Universidad País-Vasco, 95–108.

Elorza, J. & Bustillo, M.A. (1989). Early and late diagenetic chert in carbonate turbidites of the Senonian flysch, N.E. Bilbao. Spain. En: Siliceous Deposits of the Tethys and Pacific Regions. (Hein, J.R. and Obradovic, J., Eds). Springer-Verlag, New York, 93–105. https://doi.org/10.1007/978-1-4612-3494-4_7

Elorza, J. & García-Garmilla, F. (1993). Chert appearance in the Cueva-Bedón carbonate platform (Upper Cretaceous, Northern Spain). Geological Magazine, 130: 805–816. https://doi.org/10.1017/S0016756800023177

Elorza, J. & García-Garmilla, F. (1997). Chert types in the Cueva carbonate platform (Upper Cretaceous, Northern Spain). En: Siliceous Rocks and Culture. (Ramos-Millán A. & Bustillo M.A., Eds.). Servicio Editorial Universidad de Granada. Serie monográfica de Arte y Arqueología, 42: 57–74.

Erkiaga, M.; García-Garmilla, F. & Elorza, J. (1997). Modificaciones diagenéticas en nódulos de sílex por influencia de fluidos dolomitizantes: Ejemplos en el Cretácico superior de la Región Vasco-Cantábrica. Geogaceta, 22: 69–72.

Flor, G. & Flor Blanco, G. (2014). Raised beaches in the Cantabrian coast. En: Landscapes and Landforms of Spain. Springer-Verlag, Netherlands, 239–248. https://doi.org/10.1007/978-94-017-8628-7_20

García-Garmilla, F. & Elorza, J. (1996). Dolomitization and synsedimentary salt tectonic: The upper Cretaceous Cueva Formation at El Ribero, Northern Spain. Geological Magazine, 133: 721–737. https://doi.org/10.1017/S0016756800024572

García-Ramos, J.C.; Valenzuela, M. & Suarez de Centi, C. (1989). Sedimentología de las huellas de actividad orgánica. En: Sedimentología, Vol. II. (Arche, A. Ed.). Consejo Superior de Investigaciones Científicas: 261–342.

Gingras, M.K.; Pemberton, S. G.; Muelenbachs, K. & Machel, H. (2004). Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada. Geobiology, 2: 21–30. https://doi.org/10.1111/j.1472-4677.2004.00022.x

Herrero, J.M. (1989). Las mineralizaciones de Zn, Pb, F en el sector occidental de Vizcaya: Mineralogía, Geoquímica y Metalogenia. Tesis Doctoral Universidad del País Vasco, 258 pp. PMCid:PMC1032674

Knoll, A.H. (1985). Exceptional Preservation of Photosynthetic Organisms in Silicified Carbonates and Silicified Peats. Philosophical Transactions of the Royal Society of London, Series B, 311, No. 1148: 111–122. https://doi.org/10.1098/rstb.1985.0143

Maliva, R. G. & Siever, R. (1988). Diagenetic replacement controlled by force of crystallization. Geology, 16: 688–691. https://doi.org/10.1130/0091-7613(1988)016<0688:DRCBFO>2.3.CO;2

Maliva, R. G. & Siever, R. (1989). Chertification histories of some Late Mesozoic and Middle Palaeozoic platform carbonates. Sedimentology, 36: 907–926. https://doi.org/10.1111/j.1365-3091.1989.tb01753.x

Mángano, M.G. & Buatois, L.A. (1994). Trazas fósiles e icnofabricas en depósitos carbonáticos cretácicos, Las Cuevas, Alta Cordillera de Mendoza. Ameghiniana, 31: 55–66.

Mary, G. (1983). Evolución del margen costero de la Cordillera Cantábrica en Asturias desde el Mioceno. Trabajos de Geología, 13: 3–35.

McBride, E.F.; Abdel-Wahab, A. & El-Younsy, A.M. (1999). Origin of spheroidal chert nodules, Drunka Formation (Lower Eocene), Egypt. Sedimentology, 46: 733–755. https://doi.org/10.1046/j.1365-3091.1999.00253.x

Mínguez, J.M. & Elorza, J. (1994). Diagenetic volumen-for-volume replacement. Force of crystallization and depression of dissolution. Mineralogical Magazine, 58: 133–140. https://doi.org/10.1180/minmag.1994.058.390.12

Mortimore, R. N. & Pomerol, B. (1987). Correlation of the Upper Cretaceous White Chalk (Turonian to Campanian) in the Anglo-Paris Basin. Proceedings of the Geologists' Association, 98: 97–143.

Olivé Davó, A. & Ramírez del Pozo, J. (1982). Mapa Geológico de España 1:50.000, hoja nº 36, (Castro-Urdiales). IGME, Madrid.

Rosales, I. (1995). La Plataforma carbonatada de Castro Urdiales (Aptiene-Albiense, Cantabria). Tesis Doctoral, Universidad del País Vasco, 496 pp.

Rosales, I. (1999). Controls on carbonate-platform evolution on active fault blocks: The Lower Cretaceous Castro Urdiales Platform (Aptian-Albian, Northern Spain). Journal of Sedimentary Research, 69: 447–465. https://doi.org/10.2110/jsr.69.447

Siever, R. (1962). Silica Solubility, 0°-200° C., and the Diagenesis of Siliceous Sediments. The Journal of Geology, 70: 127–150. https://doi.org/10.1086/626804

Tarri-o, A. (2001). El sílex de la Cuenca Vasco Cantábrica y el Pirineo Navarro: caracterización y su aprovechamiento en la Prehistoria. Tesis Doctoral, Universidad del País Vasco, 384 pp.

Tarri-o, A.; Elorrieta, I. & García-Rojas, M. (2015). Flint as raw in prehistoric times: Cantabrian Mountain and Western Pyrenees data. Quaternary International, 364: 94–108. https://doi.org/10.1016/j.quaint.2014.10.061

Taylor, P.D. & Wilson, M.A. (2003). Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62: 1–103. https://doi.org/10.1016/S0012-8252(02)00131-9

Zimmerle, W. (1991). Stratigraphic Distribution, Lithological Paragenesis, Depositional Environments and Diagenesis of Fossil Siliceous Sponges in Europe. En: Fossil and recent sponges. (Reitner, J. & Keupp, H., Eds.) Springer, 554–577. https://doi.org/10.1007/978-3-642-75656-6_46

Zijlstra, H.J.P. (1987). Early diagenetic silica precipitation, in relation to redox boundaries and bacterial metabolism, in late cretaceous chalk of the Maastrichtian type locality. Geologie en Mijnbouw, 66: 343–355.

Zhang, F.; Xu, H.; Shelobolina, E.S.; Konishi, H.; Converse, B.; Shen, Z. & Roden, E.E. (2015). The catalytic effect of bound extracellular polymeric substances excreted by anaerobic microorganisms on Ca-Mg carbonate precipitation: Implications for the "dolomite problem". American Mineralogist, 100: 483–494. https://doi.org/10.2138/am-2015-4999

Published

2017-06-30

How to Cite

Bustillo, M. A., Elorza, J., & Díez-Canseco, D. (2017). Selective silicification of Thalassinoides and other biogenic structures in marine platform limestones and hardground (Lower Albian, Sonabia, Cantabria). Estudios Geológicos, 73(1), e064. https://doi.org/10.3989/egeol.42668.435

Issue

Section

Articles