Origin and nature of the aluminium phosphate-sulfate minerals (APS) associated with uranium mineralization in triassic red-beds (Iberian Range, Spain)

Authors

  • R. Marfil Dpt. de Petrología y Geoquímica, Facultad de Ciencias Geológicas, UCM, Madrid
  • A. La Iglesia Instituto de Geociencias (CSIC, UCM), Facultad de Ciencias Geológicas, UCM, Madrid
  • J. Estupiñán Dpt. de Ciencias de la Tierra, Facultad de Ciencias del Mar y Ambientales UCA, Cádiz

DOI:

https://doi.org/10.3989/egeol.40879.176

Keywords:

APS minerals, U-bearing sandstones, Diagenesis, Triassic Buntsandstein, Iberian Range, Spain

Abstract


This study focuses on the mineralogical and chemical study of an Aluminium–phosphate–sulphate (APS) mineralization that occurs in a clastic sequence from the Triassic (Buntsandstein) of the Iberian Range. The deposit is constituted by sandstones, mudstones, and conglomerates with arenaceous matrix, which were deposited in fluvial to shallow-marine environments. In addition to APS minerals, the following diagenetic minerals are present in the clastic sequence: quartz, K-feldspar, kaolinite group minerals, illite, Fe-oxides-hidroxides, carbonate-sulphate cement-replacements and secondary uraniferous minerals. APS minerals were identified and characterized by optical microscopy, X-ray diffraction, scanning electron microscopy, and electron microprobe. Microcrystalline APS crystals occur replacing uraniferous minerals, associated with kaolinite, mica and filling pores, in distal fluvial-to-tidal arkoses-subarkoses. Given their Ca, Sr, and Ba contents, the APS minerals can be defined as a solid solution of crandallite-goyacite-gorceixite (0.53 Ca, 0.46 Sr and 0.01 Ba). The chemical composition, low LREE concentration and Sr > S suggest that the APS mineral were originated during the supergene alteration of the Buntsandstein sandstones due to the presence of the mineralizing fluids which causes the development of U-bearing sandstones in a distal alteration area precipitating from partially dissolved and altered detrital minerals. Besides, the occurrence of dickite associated with APS minerals indicates they were precipitated at diagenetic temperatures (higher than 80ºC), related to the uplifting occurred during the late Cretaceous post-rift thermal stage.

Downloads

Download data is not yet available.

References

Benito, M.I.; De La Horra, R.; Barrenechea, J.F.; Lopez-Gomez, J.; Rodas, M.; Alonso-Azcarate, J.; Arche, A. & Luque, J. (2005). Late Permian in the SE Iberian Ranges, eastern Spain: Petrological and mineralogical characteristics and palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 229: 24-39. http://dx.doi.org/10.1016/j.palaeo.2004.12.030

Beaufort, D., Patrier, P., Laverret, E., Bruneton, P. & Mondy, J. (2005): Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator River uranium field (Northern Territory, Australia). Economic Geology, 100 (3): 515-536. http://dx.doi.org/10.2113/gsecongeo.100.3.515

Castañon, A.; De la Cruz, B. & Marfil, R. (1981). Diagenesis de las areniscas uraníferas del Trias de Mazarete (Guadalajara). Estudios Geológicos, 37: 149-158.

Chung, F.H. (1975). Quantitative interpretation of X-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. Journal of Applied Crystallography, 8: 17-19. http://dx.doi.org/10.1107/S0021889875009454

De La Cruz, B.; Marfil, R.; De la Peña, J.A. & Arribas, J. (1987). Procedencia y evolución díagenética de las areniscas Permo-Triásicas de la Cordillera Ibérica (Sierra de Albarracín-Boniches-Talayuelas, provincias de Teruel y Cuenca). Cuadernos de Geología Ibérica, 11: 493-514.

Dill, H.G. (2001). The geology of aluminium phosphates and sulphates of the alunite group minerals: A review. Earth-Science Reviews, 53: 35-93. http://dx.doi.org/10.1016/S0012-8252(00)00035-0

Ehrenberg, S.N., Aagaard, P., Willson, M.J., Fraser, A.R. and Duthie, D.M.L. (1993). Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf: Clay Minerals, 28: 325-352. http://dx.doi.org/10.1180/claymin.1993.028.3.01

Gaboreau, S.; Beaufort, D.; Viellard, Ph.; Patrier, P. & Bruneton, P. (2005). Aluminium phosphate-sulphate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River Uranium Field, Northern Territories, Australia. The Canadian Mineralogist, 43: 813-827. http://dx.doi.org/10.2113/gscanmin.43.2.813

Gaboreau, S.; Cuney, M.; Quirt, D.; Beaufort, D.; Patrier, P.; & Mathieu, R. (2007). Significance of aluminium phosphate-sulfate minerals associated with U unconformity-type deposits: The Athabasca basin, Canada. American Mineralogist, 92: 267-280. http://dx.doi.org/10.2138/am.2007.2277

Galán-Abellán, A.B.; Fernández, B.J.; López, J.G.; Lago, M.S. J.; & Benito M.M. I. (2008). Early Triassic-Anisian Continental Sediments from SE Iberian Ranges: Sedimentological and Mineralogical Features, Sociedad Española de Mineralogía, 9: 105-107.

Hoeve, J. & Quirt, D.H. (1984). Mineralization and host -rock alteration in relation to clay mineral diagenesis and evolution on the middle-Proterozoic Athabasca Basin, northern Saskatchwan, Canada. Saskatchewan Research Council Technical Report, 187: p 187.

Kister, P.; Laverret, E.; Quirt, D.; Cuney, M.; Patrier, P.; Beaufort, D. & Bruneton, P. (2006). Mineralogy and geochemistry of the host-rock alterations associated with the shea creek unconformity-type uranium deposits (Athabasca Basin, Saskatchewan, Canada). Part 2. Regional-scale spatial distribution of the Athabasca group sandstone matrix minerals. Clays and Clay Minerals, 54, 3, 295-313. http://dx.doi.org/10.1346/CCMN.2006.0540302

López-Gomez, J., Arche, A. & Pérez-Lopez, A. (2002). Permian and Triassic in The Geology of Spain. W. Gibbons & Moreno, T. Edited by The Geological Society London. 185-212.

Marfil, R., Bonhomme, M.G., De la Peña, J.A., Penha Dos Santos, R., & Sell, I. (1996a) La edad de las ilitas en areniscas pérmicas y triásicas de la Cordillera Ibérica mediante el método K/Ar: Implicaciones en la historia diagenética y evolución de la cuenca. Cuadernos de Geología Ibérica, 20: 61-83.

Marfil, R.; Scherer, M. & Turrero, M.J. (1996b). Diagenetic processes influencing porosity in sandstones from the Triassic Buntsandstein of the Iberian Range, Spain. Sedimentary Geology, 105: 203-219. http://dx.doi.org/10.1016/0037-0738(95)00138-7

Mcaulay,G.E.,Burley, S.D., Fallik, A.E., & Kusznir, N.J. (1994), Paleohydrodynamic fluid flow regimes during diagenesis of the Brent group in the Hutton-NW Hutton reservoirs, contraints from oxygen isotope studies of authigenic kaolinite and reserve flexural modelling: Clay Minerals, 29: 609-629. http://dx.doi.org/10.1180/claymin.1994.029.4.16

Morad, S.; Marfil, R.; Al-Aasm, I.S. & Gomez-Gras, D. (1992). The role of mixing-zone dolomitisation in sandstone cementation: Evidence for the Triassic Buntsandstein, the Iberian Range, Spain. Sedimentary Geology, 80: 53-65. http://dx.doi.org/10.1016/0037-0738(92)90031-L

Muñoz, M.; Ancochea, E. Sagredo, J.; De la Peña, J.A.; Hernan, F.; Brandle, J.L. & Marfil, R. (1985): Vulcanismo Permo-Carbonífero de la Cordillera Ibérica. X Cong. Inter. de Stratigraphie et de Géologie du Carbonifere, Madrid, 3: 27-52.

Papoulis, D. Tsolis-Katagas, P. & Katagas, C. (2004). Monazite alteration mechanisms and depletion measurements in kaolins. Applied Clay Science, 24: 271-285. http://dx.doi.org/10.1016/j.clay.2003.08.011

Peña de la, J.A. and Marfil, R. (1975) Estudio petrológico del Pérmico de la Cordillera Ibérica. Zona de Torre La Hija (NE de Molina de Aragón). Estudios Geológicos, 31: 513-530.

Putter, T.D., Andre, L., Bernard, A., Dupuis, C., Jedwab, J., Nicaise, D. & Perruchot, A., (2002): Trace elements (Th, U, Pb, REE) behaviour in a criptokarstic halloysite and kaolinite deposit from Southern Belgium: importance of "accessory"mineral formation for radioactive pollutant trapping . Applied Geochemistry, 17: 1313-1328. http://dx.doi.org/10.1016/S0883-2927(02)00022-7

Quirt, D., Kotzer, T. & Kyser, T.K. (1991): Tourmaline, phosphate minerals, zircon and pitchblende in the Athabasca group: Maw Zone and McArthur River Areas, Saskatchewan. Saskatchewan Geological Survey Technical Report, 91 (4): 181-191.

Rasmussen, B. (1996). Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite and xenotime) in marine sandstones: a major sink for oceanic phosphorus. American Journal of Science, 296: 601-632. doi: http://doi.dx.org/10.2475/ajs.296.6.601 http://dx.doi.org/10.2475/ajs.296.6.601

Salas, R. & Casas, A. (1993). Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian Basin. Tectonophysics, 228: 33-35. http://dx.doi.org/10.1016/0040-1951(93)90213-4

Salas, R.; Guimerá, J.; Mas, R.; Martin-Closas, C.; Melendez, A.; & Alonso, A. (2001). Evolution of the Mesozoic Central Iberian Rift System and its Cenozoic Inversion (Iberian Chain). In P.A. Ziegler, W., avazza, A.F.H. Robertson and S. Crasquin- Soleau (Eds.), Peri-Thetys Memoir 6. Mémoires du Muséum national de Histoire Naturelle, 186: 145-185.

Scott, K.M. (1987). Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, Northwest Queensland, Australia. American Mineralogist, 72: 178-187.

Spötl, C.H. (1990). Authigenic aluminium phosphate-sulphates in sandstones of the Mitterberg Formation, Northern Calcareous Alps, Austria. Sedimentology, 37: 837-845. http://dx.doi.org/10.1111/j.1365-3091.1990.tb01828.x

Wilson, J.A. (1985) Crandallite group minerals in the Helikian Athabasca group in Alberta, Canada. Canadian Journal of Earth Sciences, 22: 637-641.

Downloads

Published

2013-06-30

How to Cite

Marfil, R., La Iglesia, A., & Estupiñán, J. (2013). Origin and nature of the aluminium phosphate-sulfate minerals (APS) associated with uranium mineralization in triassic red-beds (Iberian Range, Spain). Estudios Geológicos, 69(1), 21–34. https://doi.org/10.3989/egeol.40879.176

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>