Revisión de los modelos hidrogeoquímicos de génesis de tobas calcáreas

Authors

  • S. Ordóñez Departamento de Ciencias de la Tierra y del Medio Ambiente-Laboratorio de Petrología Aplicada, Unidad Asociada UA-CSIC (Universidad de Alicante)
  • D. Benavente Departamento de Ciencias de la Tierra y del Medio Ambiente-Laboratorio de Petrología Aplicada, Unidad Asociada UA-CSIC (Universidad de Alicante)

DOI:

https://doi.org/10.3989/egeol.41753.325

Keywords:

calcareous tufa, fresh water carbonates, sedimentology, dedolomitization, kinetics of dissolution, calcite, gypsum, dolomite, carbon dioxide, mixing waters

Abstract


The calcareous tufa deposits in fresh waters are widely represented in the Iberian Peninsula, mostly related to springs from carbonate aquifers. Most studies on the geochemical modelling of the genesis of calcareous tufa consider the meteoric water percolating through the limestone aquifer is enriched in CO₂ by existing microbiological activity in soil. The new equilibrium with atmospheric CO₂ in springs and/or metabolic activity of microorganisms determines a rich variety of facies of calcareous tufa. The resulting water has a calcium bicarbonate nature. However, the hydrochemical modelling has not completely been addressed and the boundary conditions have not been taken into account in tufa systems in which soils present low CO₂ concentrations or when the nature of waters are Ca-Mg-SO₄-HCO₃. In this paper, hydrochemical results from two important examples of genesis of calcareous tufa are presented: Júcar river (Valdeganga - Presa de la Central Hidroeléctrica del Bosque) and Guadiana Alto river (Ruidera pools). These results are also compared with other kart spring waters recently studied in the area. The water nature of Júcar river and Ruidera aquifers shows clearly a Ca-Mg-SO₄-HCO₃ facies. The hydrochemical interpretation cannot exclusively be explained using the CO₂–H₂O– calcite system, which has widely been used in studies of precipitation rates and paleoclimatic records of calcareous tufa or Karstification reactions of limestone aquifers. In this review, we evaluate the dedolomitization and gypsum dissolution, which are independent of partial pressure of CO₂, and kinetics and sustainability of processes in terms of genesis of tufa systems. We also consider other CO₂-dependent reactions such as the calcification gypsum and dissolution and precipitation of calcite by mixing waters. This explains the nature of waters from dolomite-gypsum aquifers and also their great generator potential of tufa systems, and refuses the interpretation based exclusively on the presence of humic acid-rich soils, not very common in arid and semi-arid areas. Finally, we examine mixing waters in multi-layered or compartmentalized seasonally aquifers, which can produce waters that develop calcareous tufa.

Downloads

Download data is not yet available.

References

Andrews, J.E. (2006). Palaeoclimatic records from stable isotopes in riverine tufas. Earth-Science Reviews: 75: 85–104. http://dx.doi.org/10.1016/j.earscirev.2005.08.002

Ayora, C.; Taberner, C.; Saaltink, M.W. & Carrera, J. (1998). The genesis of dedolomites: a discusion based on reactive transport modelling. Journal of Hydrology, 209: 346–365. http://dx.doi.org/10.1016/S0022-1694(98)00095-X

Banks, V.J. & Jones, P.F. (2012). Hydrogeological Significance of Secondary Terrestrial Carbonate Deposition in Karst Environments. In: Hydrogeology - A Global Perspective (Kazemi, G.A., Ed.), InTech., 43–78. http://dx.doi.org/10.5772/29300

Berner, R.A. (1971). Principles of chemical sedimentology. McGraw-Hill, 240 pp.

Bischoff, J.L.; Juliá, R.; Shanks III, W.C. & Rosenbauer, R.J. (1994). Karstification without carbonic acid: Bedrock dissolution by gypsum-driven. Geology, 22: 995–998. http://dx.doi.org/10.1130/0091-7613(1994)022<0995:KWCABD>2.3.CO;2

Brasier, A.T. (2011). Searching for travertines, calcretes and speleothems in deep time: Processes, appearances, predictions and the impact of plants. Earth- Science Reviews, 104: 213–239. http://dx.doi.org/10.1016/j.earscirev.2010.10.007

Capezzuoli, E.; Gandin, A. & Pedley, M. (2013). Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology, 61: 1–21. http://dx.doi.org/10.1111/sed.12075

Corbellá, M.; Escorcia, L.C. & Gomez-Rivas, E (2011). Impact of Dedolomitization on Reservoir Quality: Insights from Reactive Transport Simulations. Macla, 15: 65–66.

Emmanuel, S. & Ague, J. (2011). Impact of nano-size weathering products on the dissolution rates of primary minerals. Chemical Geology, 282: 11–18. http://dx.doi.org/10.1016/j.chemgeo.2011.01.002

Eugercios, A. (2013). Interacciones acuífero-lago y biogeoquímica del nitrógeno en ambientes kársticas. Tesis Doctoral, Universidad Complutense de Madrid, 414 pp.

Fernández-Díaz, L.; Rodríguez – Blanco, J.D. & Prieto Rubio, M. (2008). Interacción entre cristales de yeso y soluciones carbonatadas: cinética y transformaciones. Macla, 9: 93–94.

Fernández-Fernández, A. (1996). Geomorfología del cañón del río Júcar en la comarca de La Manchuela (Albacete). Tesis Doctoral. Universidad Complutense de Madrid, 721 pp.

Fernández-Fernández, A.; García del Cura, M.A.; González Martín, J.A. & Ordóñez, S. (2000). Morfogénesis y sedimentación carbonática Pleistocena en el valle del Júcar (Albacete). Geotemas, 1: 353–357.

Fernández-Fernández, A.; González Martín, J.A.; García del Cura, M.A. & Ordóñez, S. (1997). Los edificios tobáceos Holocenos en el valle del Júcar en la Manchuela (Albacetete, España). Études de Géographie Physique, 26: 61–62.

Fernández-Fernández, A.; González Martín, J.A.; García del Cura, M.A., Benavente, D. & Ordóñez, S. (1999). Aproximación químico-física a la precipitación de carbonatos en cauces fluviales: río Júcar (España). Actas II Congreso Ibérico de Geoquímica, Lisboa. 1: 222–226.

Freyer, D. & Voigt, W. (2003). Crystallization and phase stability of CaSO₂ and CaSO₄ – based salts. Monatshefte für Chemie, 134: 693–719. http://dx.doi.org/10.1007/s00706-003-0590-3

García del Cura, M.A.; Calvo, J.P.; Ordóñez, S.; Jones, B. & Cañaveras, J.C. (2001). La Roda "white earth" (Pliocene, central Spain): Petrographic and geochemical evidence for the formation of primary, bacterially induced lacustrine dolomite. Sedimentology. 48: 897–915. http://dx.doi.org/10.1046/j.1365-3091.2001.00388.x

Garrels, R.M & Mackenzie, F.T. (1967). Origin of the chemical composition of springs and lakes. In: Equilibrium concepts in natural water systems: American Chemical Society, Advances in Chemistry Series, 67: 222–242.

Glynn, P.D. & Plummer, L.N. (2005). Geochemistry and the understanding of groundwater systems. Hydrogeology Journal, 13: 263–287. http://dx.doi.org/10.1007/s10040-004-0429-y

Grande, F.; Ordóñez, S.; González Martín, J.A. & García del Cura, M.A. (1997). La recuperación hídrica de las Lagunas de Ruidera y su repercusión sobre las barreras tobáceas. Études de Géographie Physique, 26: 157–158.

Hardie, L.A. (1967). The gypsum-anhydrite equilibrium at one atmosphere pressure. The American Mineralogist, 52: 171–200.

Jeschke, A.; Vosbeck, K. & Dreybrodt, W. (2001). Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochimica et Cosmochimica Acta, 65: 27–34. http://dx.doi.org/10.1016/S0016-7037(00)00510-X

Lasaga A.C. (1998). Kinetic Theory in the Earth Sciences. Princeton Ser. in Geochemistry, Princeton University Press, Princeton. 811 pp.

Montero, E. (1994). Funcionamiento hidrogeológico del sistema de las lagunas de Ruidera. Tesis Doctoral, Universidad Complutense de Madrid.

Moral, F.; Cruz-Sanjulián, J.J. & Olías, M. (2008). Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). Journal of Hydrology, 360: 281–296. http://dx.doi.org/10.1016/j.jhydrol.2008.07.012

Morse, J.W. & Arvidson, R.S. (2002). The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 58: 51–84. http://dx.doi.org/10.1016/S0012-8252(01)00083-6

Niñerola, S. & Torrens, J. (1979). Características hidrogeológicas generales de la Cuenca Alta del Rio Guadiana. Hidrogeología y Recursos Hidraúlicos, 4: 309–326.

Obst, M.; Dynes, J.J.; Lawrence, J.R.; Swerhone, G.D.W.; Benzerara, K.; Karunakaran, C.; Kaznatcheev, K.; Tyliszczak, T. & Hitchcock, A.P. (2009). Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73: 4180–4198. http://dx.doi.org/10.1016/j.gca.2009.04.013

Ordóñez, S. & Felipe, A. (1988). Modelización matemática de la hidroquímica de las aguas de un macizo dolomítico - yesífero. Aplicación a la génesis de los travertinos de las Lagunas de Ruidera. Estudios Geológicos, 44: 99–105.

Ordóñez, S. & García del Cura, M.A. (1982). Recent and Tertiary fluvial carbonates in Central Spain. In: Modern and Ancient Fluvial Systems (Collinson, J.D. & Lewin, J. Eds.). International Association of Sedimentologist Special Publication, 6, 485–497.

Ordóñez, S.; García del Cura, M.A. & Carballal, R. (1978). Stromatolites and oncolites in the modern fluvial environment. 10th International Congress on Sedimentology, Jerusalem. Abstracts, 2: 489–490.

Ordóñez, S.; González, J. A.; García del Cura, M.A. & Pedley, H.M. (2005). Temperate and semi-arid tufas in the Pleistocene to Recent fluvial barrage system in the Mediterranean area: The Ruidera Lakes Natural Park (Central Spain). Geomorphology, 69: 332–350. http://dx.doi.org/10.1016/j.geomorph.2005.02.002

Ordóñez, S.; Santos, J.A. & García del Cura, M.A. (1975). Contribución al conocimiento de la evolución de la cuenca del río Júcar durante el Neógeno - Cuaternario. Congreso Iberoamericano de Geología Económica. Buenos Aires. 3: 579–596.

Parkhurst, D.L. & Appelo, C.A.J. (1999). User's guide to PHREEQC (version 2) — a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 pp.

Pedley, M. (2014). The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments. Sedimentology, 61: 22–40. http://dx.doi.org/10.1111/sed.12042

Pedley, M., Rogerson, M. & Middleton, R. (2009). Fresh-water calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas. Sedimentology, 56: 511–527. http://dx.doi.org/10.1111/j.1365-3091.2008.00983.x

Pentecost, A. & Viles, H.A. (1994). A review and reassessment of travertine classification. Géographie physique et Quaternaire, 48: 305–314.

Pentecost, A. (2005). Travertine. Springer-Verlag, Berlin and Heidelberg. 445 pp.

Plata, A. & Pérez-Zabaleta, E. (1995). Estudio de la hidrología isotópica de la Cuenca del Guadiana. CEDEX Documento Interno. 224 pp.

Rogerson, M.; Pedley, H.M.; Wadhawan, J.D. & Middleton, R. (2008). New insights into biological influence on the geochemistry of freshwater carbonate deposits. Geochimica et Cosmochimica Acta, 72: 4976–4987. http://dx.doi.org/10.1016/j.gca.2008.06.030

Sanz, D. (2005). Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha Oriental. Tesis Doctoral, Universidad Complutense de Madrid, 251 pp.

Sanz, D.; Martínez-Alfaro, P.E.; Castaño, C. & Gómez-Alday, J.J. (2005). Caracterización de los dominios hidrogeológicos individualizados en el Sistema Mancha Oriental. SE Español. Geogaceta, 38: 251–254.

Sanz, E.; Ayora, C. & Carrera, J. (2011). Calcite dissolution by mixing waters: geochemical modeling and flow-through experiments. Geologica Acta, 9: 67–77.

Souza-Egipsy, V.; García del Cura, M.A.; Ascaso, C.; de los Ríos, A.; Wierzchos, J. & González-Martín, J.A. (2006). Interaction between Calcite and Phosphorus in Biomineralization Processes in Tufa Carbonates. International Review of Hydrobiology, 91: 222–241. http://dx.doi.org/10.1002/iroh.200510845

Thrailkill, J. (1968). Chemical and hydrologic factors in the excavation of limestone caves. Geological Society of America Bulletin, 79: 1637–1658. http://dx.doi.org/10.1130/0016-7606(1968)79[19:CAHFIT]2.0.CO;2

White, W.B. (1997). Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains. Environmental Geology, 30: 46–58. http://dx.doi.org/10.1007/s002540050131

Wigley, T.M.L. & Plummer, L.N. (1976). Mixing of carbonate waters: Geochimica et Cosmochimica Acta, 40: 989– 995. http://dx.doi.org/10.1016/0016-7037(76)90041-7

Published

2014-12-30

How to Cite

Ordóñez, S., & Benavente, D. (2014). Revisión de los modelos hidrogeoquímicos de génesis de tobas calcáreas. Estudios Geológicos, 70(2), e013. https://doi.org/10.3989/egeol.41753.325

Issue

Section

Articles

Most read articles by the same author(s)