Crystallization conditions during the differentiation of the El Metate volcano lavas (Michoacán-Guanajuato Volcanic Field, México)

Authors

  • E. Losantos Instituto de Geociencias (CSIC, UCM)
  • J. M. Cebriá Instituto de Geociencias (CSIC, UCM)
  • D. J. Morán-Zenteno Instituto de Geología (UNAM)
  • B. M. Martiny Instituto de Geología (UNAM)
  • J. López-Ruiz Instituto de Geociencias (CSIC, UCM)

DOI:

https://doi.org/10.3989/egeol.41806.349

Keywords:

Geothermobarometry, fractional crystallization, mineral chemistry, magmatic differentiation

Abstract


El Metate is a shield volcano located in the southern sector of the Michoacan-Guanajuato Volcanic Field, one of two largest monogenetic volcanic fields of the Transmexican Volcanic Belt. It was active c. 4.700 ± 200 years B.P and emitted about fifteen calcalkaline lava flows showing variable differentiation degrees. Temperatures calculated from mineral-liquid geothermobarometers for olivine, plagioclase and pyroxene, suggest that olivine was the earliest fractionating phase (1232–1198 °C), followed by plagioclase (1162–1126 °C), orthopyroxene (1147–1027 °C) and clinopyroxene (1147–1018 °C). Pressure estimations indicate that crystallization started at ~7 kbar and progressed up to surface levels. Water contents in the melts during crystalliztion of plagioclase is estimated at ~1.6%. Temperatures calculated on the basis of Al content in amphibole, provide a crystallization range between 995 and 922 °C, at an average pressure of 3.5 kbar and water contents between 5.2% and 6.9%. Although these values could agree with a scenario where amphibole represents a late crystallization phase along the previous fractionating sequence, the systematic presence of disequilibrium textures, which are also observed occasionally in other phases, suggest that other possibilities such as open-system crystallization cannot be discarded.

Downloads

Download data is not yet available.

References

Beattie, P. (1993). Olivine-melt and orthopyroxene-melt equilibria. Contributions to Mineralogy and Petrology, 115(1): 103–111. http://dx.doi.org/10.1007/BF00712982

Cebriá, J.M.; Martiny, B.M.; López-Ruiz, J. & Morán-Zenteno, D.J. (2011). The Parícutin calc-alkaline lavas: New geochemical and petrogenetic modelling constraints on the crustal assimilation process. Journal of Volcanology and Geothermal Research, 201(1–4): 113–125. http://dx.doi.org/10.1016/j.jvolgeores.2010.11.011

Corona-Chávez, P.; Reyes-Salas, M.; Garduño-Monroy, V.H.; Israde-Alcántara, I.; Lozano-Santa Cruz, R.; Morton-Bermea, O. & Hernández-Álvarez, E. (2006). Assimilation of granitic xenoliths in the Michoacán-Guanajuato volcanic field: The case of Arócutin, Michoacán, Mexico. Revista Mexicana de Ciencias Geológicas, 23(2): 233–245.

Costa, F.; Andreastuti, S.; Bouvet de Maisonneuve, C. & Pallister, J.S. (2013). Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. Journal of Volcanology and Geothermal Research, 261: 209–235. http://dx.doi.org/10.1016/j.jvolgeores.2012.12.025

Chesley, J.; Ruiz, J.; Righter, K.; Ferrari, L. & Gómez-Tuena, A. (2002). Source contamination versus assimilation: An example from the Trans-Mexican volcanic arc. Earth and Planetary Science Letters, 195(3–4): 211–221. http://dx.doi.org/10.1016/S0012-821X(01)00580-5

Dahren, B.; Troll, V.; Andersson, U.; Chadwick, J.; Gardner, M.; Jaxybulatov, K. & Koulakov, I. (2012). Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions. Contributions to Mineralogy and Petrology, 163(4): 631–651. http://dx.doi.org/10.1007/s00410-011-0690-8

Ferrari, L.; López-Martínez, M.; Aguirre-Díaz, G. & Carrasco-Núñez, G. (1999). Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology, 27(4): 303–306. http://dx.doi.org/10.1130/0091-7613(1999)027<0303:STPOCA>2.3.CO;2

Ferrari, L.; Orozco-Esquivel, T.; Manea, V. & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522–523(0): 122–149. http://dx.doi.org/10.1016/j.tecto.2011.09.018

Ghiorso, M.S.; Hirschmann, M.M.; Reiners, P.W. & Kress, V.C. (2002). The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5): 1–35.

Gómez-Tuena, A.; Orozco-Esquivel, M.T. & Ferrari, L. (2007). Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Geology of México: Celebrating the Centenary of the Geological Society of México. (Alaniz-Álvarez, S.A. & Nieto-Samaniego, A.F., eds.) Geological Society of America Special Paper 422, 129–181. http://dx.doi.org/10.1130/2007.2422(05)

Grove, T.L. & Juster, T.C. (1989). Experimental investigations of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic liquids. Contributions to Mineralogy and Petrology, 103(3): 287–305. http://dx.doi.org/10.1007/BF00402916

Hasenaka, T. (1994). Size, distribution, and magma output rate for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. Journal of Volcanology and Geothermal Research, 63(1–2): 13–31. http://dx.doi.org/10.1016/0377-0273(94)90016-7

Hasenaka, T. & Carmichael, I.S.E. (1985). The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25(1–2): 105–124. http://dx.doi.org/10.1016/0377-0273(85)90007-1

Hasenaka, T. & Carmichael, I.S.E. (1987). The Cinder Cones of Michoacán-Guanajuato, Central Mexico: Petrology and Chemistry. Journal of Petrology, 28(2): 241–269. http://dx.doi.org/10.1093/petrology/28.2.241

Johnson, C.A. & Harrison, C.G.A. (1989). Tectonics and volcanism in Central Mexico: A landsat thematic mapper perspective. Remote Sensing of Environment, 28(0): 273–286. http://dx.doi.org/10.1016/0034-4257(89)90119-3

Johnson, E.R.; Wallace, P.J.; Cashman, K.V. & Delgado Granados, H. (2010). Degassing of volatiles (H2O, CO2, S, Cl) during ascent, crystallization, and eruption at mafic monogenetic volcanoes in central Mexico. Journal of Volcanology and Geothermal Research, 197(1–4): 225–238. http://dx.doi.org/10.1016/j.jvolgeores.2010.02.017

Keiding, J.K. & Sigmarsson, O. (2012). Geothermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing systems. Journal of Geophysical Research: Solid Earth, 117 (B9): B00C09.

Kinzler, R.J. & Grove, T.L. (1992). Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. Journal of Geophysical Research, 97(B5): 6885–6906. http://dx.doi.org/10.1029/91JB02840

Le Bas, M.J.; Le Maitre, R.W. & Woolley, A.R. (1992). The construction of the Total Alkali-Silica chemical classification of volcanic rocks. Mineralogy and Petrology, 46(1): 1–22. http://dx.doi.org/10.1007/BF01160698

Lozano-Santa Cruz, R. & Bernal, J.P. (2005). Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Revista Mexicana de Ciencias Geológicas, 22(3): 329–344.

Luhr, J.F. & Carmichael, I. (1985). Jorullo Volcano, Michoacán, Mexico (1759–1774): The earliest stages of fractionation in calc-alkaline magmas. Contributions to Mineralogy and Petrology, 90(2): 142–161. http://dx.doi.org/10.1007/BF00378256

Mathez, E. (1973). Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks. Contributions to Mineralogy and Petrology, 41(1): 61–72. http://dx.doi.org/10.1007/BF00377654

Patiño Douce, A.E. (2005). Vapor-absent melting of tonalite at 15–32 kbar. Journal of Petrology, 46(2): 275–290. http://dx.doi.org/10.1093/petrology/egh071

Plechov, P.Y.; Tsai, A.E.; Shcherbakov, V.D. & Dirksen, O.V. (2008). Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology, 16(1): 19–35. http://dx.doi.org/10.1134/S0869591108010025

Putirka, K.; Johnson, M.; Kinzler, R.; Longhi, J. & Walker, D. (1996). Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contributions to Mineralogy and Petrology, 123(1): 92–108. http://dx.doi.org/10.1007/s004100050145

Putirka, K.D. (2005). Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. American Mineralogist, 90(2–3): 336–346. http://dx.doi.org/10.2138/am.2005.1449

Putirka, K.D. (2008). Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61–120. http://dx.doi.org/10.2138/rmg.2008.69.3

Rhodes, J.M.; Dungan, M.A.; Blanchard, D.P. & Long, P.E. (1979). Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22°N on the mid-Atlantic Ridge. Tectonophysics, 55(1–2): 35–61. http://dx.doi.org/10.1016/0040-1951(79)90334-2

Ridolfi, F.; Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. http://dx.doi.org/10.1007/s00410-009-0465-7

Roeder, P.L. & Emslie, R.F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29: 275–289. http://dx.doi.org/10.1007/BF00371276

Scaillet, B. & MacDonald, R. (2003). Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. Journal of Petrology, 44(10): 1867–1894. http://dx.doi.org/10.1093/petrology/egg062

Sisson, T.W. & Grove, T.L. (1993a). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2): 143–166. http://dx.doi.org/10.1007/BF00283225

Sisson, T.W. & Grove, T.L. (1993b). Temperatures and H2O contents of low-MgO high-alumina basalts. Contributions to Mineralogy and Petrology, 113(2): 167–184. http://dx.doi.org/10.1007/BF00283226

Streck, M.J. (2008). Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595–622. http://dx.doi.org/10.2138/rmg.2008.69.15

Suter, M.; Contreras, J.; Gómez-Tuena, A.; Siebe, C.; Quintero-Legorreta, O.; García-Palomo, A.; Macías, J.L.; Alaniz-Álvarez, S.A.; Nieto-Samaniego, A.F. & Ferrari, L. (1999). Effect of strain rate in the distribution of monogenetic and polygenetic volcanism in the Transmexican volcanic belt: Comments and Reply. Geology, 27(6): 571–575. http://dx.doi.org/10.1130/0091-7613(1999)027<0571:EOSRIT>2.3.CO;2

Urrutia-Fucugauchi, J. & Uribe-Cifuentes, R.M. (1999). Lower-crustal xenoliths from the Valle de Santiago maar field, Michoacan-Guanajuato volcanic field, central Mexico. International Geology Review, 41(12): 1067–1081. http://dx.doi.org/10.1080/00206819909465192

Walter, M.J. & Presnall, D.C. (1994). Melting behavior of simplified lherzolite in the system CaO-MgO- Al2O3-SiO2-Na2O from 7 to 35 kbar. Journal of Petrology, 35(2): 329–359. http://dx.doi.org/10.1093/petrology/35.2.329

Published

2014-12-30

How to Cite

Losantos, E., Cebriá, J. M., Morán-Zenteno, D. J., Martiny, B. M., & López-Ruiz, J. (2014). Crystallization conditions during the differentiation of the El Metate volcano lavas (Michoacán-Guanajuato Volcanic Field, México). Estudios Geológicos, 70(2), e020. https://doi.org/10.3989/egeol.41806.349

Issue

Section

Articles